Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications

DOI: 10.2514/1.35850 We address the problem of propagating input uncertainties through a computational fluid dynamics model. Methods such as Monte Carlo simulation can require many thousands (or more) of computational fluid dynamics solves, rendering them prohibitively expensive for practical applications. This expense can be overcome with reduced-order models that preserve the essential flow dynamics. The specific contributions of this paper are as follows: first, to derive a linearized computational fluid dynamics model that permits the effects of geometry variations to be represented with an explicit affine function; second, to propose an adaptive sampling method to derive a reduced basis that is effective over the joint probability density of the geometry input parameters. The method is applied to derive efficient reduced models for probabilistic analysis of a two-dimensional problem governedbythelinearized Eulerequations.Reduced-order modelsthatachieve 3-orders-of-magnitude reduction in the number of states are shown to accurately reproduce computational fluid dynamics Monte Carlo simulation results at a fraction of the computational cost.

[1]  D. Ewins,et al.  Quantitative Prediction of the Effects of Mistuning Arrangement on Resonant Response of a Practical Turbine Bladed Disc , 2000 .

[2]  Ramana V. Grandhi,et al.  Probabilistic Analysis of Geometric Uncertainty Effects on Blade Modal Response , 2003 .

[3]  Eric James Grimme,et al.  Krylov Projection Methods for Model Reduction , 1997 .

[4]  Michael C. Romanowski Reduced order unsteady aerodynamic and aeroelastic models using Karhunen-Loeve eigenmodes , 1996 .

[5]  Thilo Penzl Algorithms for model reduction of large dynamical systems , 2006 .

[6]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[7]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.

[8]  Jerry H. Griffin,et al.  A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes , 2001 .

[9]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[10]  Karen Willcox,et al.  Goal-oriented, model-constrained optimization for reduction of large-scale systems , 2007, J. Comput. Phys..

[11]  J. H. Griffin,et al.  Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model-Part II: Application (2003-GT-38953) , 2004 .

[12]  C EisenstatStanley,et al.  Choosing the forcing terms in an inexact Newton method , 1996 .

[13]  David L. Darmofal,et al.  DEVELOPMENT OF A HIGHER-ORDER SOLVER FOR AERODYNAMIC APPLICATIONS , 2004 .

[14]  E. Grimme,et al.  Pade approximation of large-scale dynamic systems with Lanczos methods , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[15]  俊治 榎本,et al.  43rd AIAA Aerospace Sciences Meeting and Exhibit , 2005 .

[16]  Robert Haimes,et al.  Towards the Next Generation in CFD , 2005 .

[17]  M. Grepl Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations , 2005 .

[18]  Ahmed K. Noor,et al.  Reduced Basis Technique for Nonlinear Analysis of Structures , 1979 .

[19]  Alok Sinha,et al.  Vibratory Parameters of Blades From Coordinate Measurement Machine Data , 2008 .

[20]  A. Antoulas,et al.  A Rational Krylov Iteration for Optimal H 2 Model Reduction , 2006 .

[21]  K. Afanasiev,et al.  Adaptive Control Of A Wake Flow Using Proper Orthogonal Decomposition1 , 2001 .

[22]  Christophe Pierre,et al.  Vibration Modeling of Bladed Disks Subject to Geometric Mistuning and Design Changes , 2004 .

[23]  Thomas F. Coleman,et al.  A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems , 1999, SIAM J. Sci. Comput..

[24]  Haym Benaroya,et al.  Modeling Fluid Structure Interaction , 2000 .

[25]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[26]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[27]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[28]  J. H. Griffin,et al.  Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model-Part I: Theory (2003-GT-38952) , 2004 .

[29]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[30]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[31]  Danny C. Sorensen,et al.  The Sylvester equation and approximate balanced reduction , 2002 .

[32]  K. Kunisch,et al.  Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .

[33]  David L. Darmofal,et al.  Impact of Geometric Variability on Axial Compressor Performance , 2003 .

[34]  M. Gunzburger,et al.  Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data , 2007 .

[35]  David E. Keyes,et al.  Parallel Algorithms for PDE-Constrained Optimization , 2006, Parallel Processing for Scientific Computing.

[36]  Charbel Farhat,et al.  Reduced-order fluid/structure modeling of a complete aircraft configuration , 2006 .

[37]  H. Miura,et al.  An approximate analysis technique for design calculations , 1971 .

[38]  Ieee Circuits,et al.  IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems information for authors , 2018, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[39]  K. Maute,et al.  Multi-point Extended Reduced Order Modeling For Design Optimization and Uncertainty Analysis , 2006 .

[40]  Jacob K. White,et al.  A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[41]  A. Antoulas,et al.  A Survey of Model Reduction by Balanced Truncation and Some New Results , 2004 .

[42]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[43]  George Biros,et al.  Parallel Multiscale Gauss-Newton-Krylov Methods for Inverse Wave Propagation , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[44]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[45]  Christophe Pierre,et al.  A reduced-order modeling technique for mistuned bladed disks , 1994 .

[46]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[47]  Jacob K. White,et al.  Low-Rank Solution of Lyapunov Equations , 2004, SIAM Rev..

[48]  Michel van Tooren,et al.  Investigation over CFD-based models for the identification of nonlinear unsteady aerodynamics responses , 2006 .

[49]  J. H. Griffin,et al.  Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model: Part 2 — Application , 2003 .

[50]  Alok Sinha,et al.  Vibratory Parameters of Blades From Coordinate Measurement Machine (CMM) Data , 2005 .

[51]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[52]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[53]  Walter L. Smith Probability and Statistics , 1959, Nature.