A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives

Our main aim in the current paper is to find a numerical plan for 2D Rayleigh–Stokes model with fractional derivative on irregular domains such as circular, L-shaped and a unit square with a circular and square hole. The employed fractional derivative is the Riemann–Liouville sense. Also, by integrating the equation corresponding to the time variable and then using the Galerkin FEM for the space direction, we obtain a full discrete scheme. The unconditional stability and the convergence estimate of the new scheme have been concluded. Finally, we evaluate results of Galerkin FEM with other numerical methods.

[1]  Weihua Deng,et al.  Finite Difference/Element Method for a Two-Dimensional Modified Fractional Diffusion Equation , 2012 .

[2]  Haitao Qi,et al.  Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd-B model , 2007 .

[3]  Changpin Li,et al.  Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle , 2007 .

[4]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[5]  I. Turner,et al.  A high-order spectral method for the multi-term time-fractional diffusion equations , 2016 .

[6]  Mark Ainsworth,et al.  A unified Petrov-Galerkin spectral method for fractional PDEs , 2015 .

[7]  Dengke Tong,et al.  Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe , 2005 .

[8]  D. Bose,et al.  Unsteady Incompressible Flow of a Generalized Oldroyd-B Fluid between Two Oscillating Infinite Parallel Plates in Presence of a Transverse Magnetic Field , 2015 .

[9]  Mehdi Dehghan,et al.  Numerical solution of fractional advection-diffusion equation with a nonlinear source term , 2014, Numerical Algorithms.

[10]  Zhi‐zhong Sun,et al.  A compact difference scheme for the fractional diffusion-wave equation , 2010 .

[11]  Mehdi Dehghan,et al.  Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations , 2015, J. Comput. Appl. Math..

[12]  Chunhong Wu Numerical solution for Stokes' first problem for a heated generalized second grade fluid with fractional derivative , 2009 .

[13]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[14]  Xianjuan Li,et al.  Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..

[15]  Chang-pin Li,et al.  Fractional derivatives in complex planes , 2009 .

[16]  Mingrong Cui,et al.  Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..

[17]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[18]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[19]  C. Pozrikidis,et al.  Introduction to finite and spectral element methods using MATLAB , 2014 .

[20]  Zaid M. Odibat,et al.  Computational algorithms for computing the fractional derivatives of functions , 2009, Math. Comput. Simul..

[21]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[22]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[23]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[24]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[25]  Yao-hua Zhao,et al.  The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model , 2006 .

[26]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[27]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[28]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[29]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[30]  Weihua Deng,et al.  Remarks on fractional derivatives , 2007, Appl. Math. Comput..

[31]  Changpin Li,et al.  A Fully Discrete Discontinuous Galerkin Method for Nonlinear Fractional Fokker-Planck Equation , 2010 .

[32]  Shanoja R. Naik,et al.  The fractional-diffusion equation and a new distribution to model positively skewed data with heavy tails , 2013 .

[33]  Changpin Li,et al.  High-Order Algorithms for Riesz Derivative and their Applications (III) , 2016 .

[34]  E. H. Doha,et al.  EFFICIENT CHEBYSHEV SPECTRAL METHODS FOR SOLVING MULTI-TERM FRACTIONAL ORDERS DIFFERENTIAL EQUATIONS , 2011 .

[35]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[36]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[37]  Fawang Liu,et al.  Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives , 2008, Appl. Math. Comput..

[38]  Dengke Tong,et al.  Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe , 2005 .

[39]  George E. Karniadakis,et al.  Fractional spectral collocation methods for linear and nonlinear variable order FPDEs , 2015, J. Comput. Phys..

[40]  I. Podlubny Fractional differential equations , 1998 .

[41]  Changpin Li,et al.  Numerical Algorithms for the Fractional Diffusion-Wave Equation with Reaction Term , 2013 .

[42]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[43]  Olof Runborg Finite difference methods for the diffusion equation , 2003 .

[44]  George E. Karniadakis,et al.  Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations , 2014, SIAM J. Sci. Comput..

[45]  Changpin Li,et al.  Fractional differential models for anomalous diffusion , 2010 .

[46]  Qingxia Liu,et al.  Numerical method of Rayleigh-Stokes problem for heated generalized second grade fluid with fractional derivative , 2009 .

[47]  Mingrong Cui Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation , 2012, Numerical Algorithms.

[48]  Solution of Fractional Order Rayleigh-Stokes Equations , 2008 .

[49]  Changpin Li,et al.  Numerical algorithm based on Adomian decomposition for fractional differential equations , 2009, Comput. Math. Appl..

[50]  Changpin Li,et al.  Numerical approaches to fractional calculus and fractional ordinary differential equation , 2011, J. Comput. Phys..

[51]  Ali H. Bhrawy,et al.  An Accurate Spectral Galerkin Method for Solving Multiterm Fractional Differential Equations , 2014 .

[52]  Changpin Li,et al.  A numerical approach to the generalized nonlinear fractional Fokker-Planck equation , 2012, Comput. Math. Appl..

[53]  Fawang Liu,et al.  Finite difference approximations for the fractional Fokker–Planck equation , 2009 .

[54]  Fawang Liu,et al.  Galerkin finite element approximation of symmetric space-fractional partial differential equations , 2010, Appl. Math. Comput..

[55]  Changpin Li,et al.  On chaos synchronization of fractional differential equations , 2007 .

[56]  Fawang Liu,et al.  A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain , 2015, J. Comput. Phys..

[57]  Yubin Yan,et al.  A finite element method for time fractional partial differential equations , 2011 .

[58]  Mehdi Dehghan,et al.  A new operational matrix for solving fractional-order differential equations , 2010, Comput. Math. Appl..

[59]  Changpin Li,et al.  Fractional difference/finite element approximations for the time-space fractional telegraph equation , 2012, Appl. Math. Comput..

[60]  Chun Yang,et al.  Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels , 2009, Appl. Math. Comput..

[61]  M. Dehghan,et al.  Solving nonlinear fractional partial differential equations using the homotopy analysis method , 2010 .

[62]  Constantin Fetecau,et al.  Flow of a generalized Oldroyd-B fluid due to a constantly accelerating plate , 2008, Appl. Math. Comput..

[63]  MOHSEN ZAYERNOURI,et al.  Spectral and Discontinuous Spectral Element Methods for Fractional Delay Equations , 2014, SIAM J. Sci. Comput..

[64]  Jingtang Ma,et al.  High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..

[65]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[66]  Sören Bartels,et al.  Numerical Approximation of Partial Differential Equations , 2016 .

[67]  Yangquan Chen,et al.  High-order algorithms for Riesz derivative and their applications (II) , 2015, J. Comput. Phys..

[68]  Mehdi Dehghan,et al.  The use of compact boundary value method for the solution of two-dimensional Schrödinger equation , 2009 .

[69]  George E. Karniadakis,et al.  Petrov-Galerkin and Spectral Collocation Methods for Distributed Order Differential Equations , 2016, SIAM J. Sci. Comput..

[70]  Fawang Liu,et al.  An implicit numerical method for the two-dimensional fractional percolation equation , 2013, Appl. Math. Comput..

[71]  Mehdi Dehghan,et al.  THE CONSTRUCTION OF OPERATIONAL MATRIX OF FRACTIONAL DERIVATIVES USING B-SPLINE FUNCTIONS , 2012 .

[72]  William McLean,et al.  Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation , 2011, Numerical Algorithms.

[73]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[74]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[75]  Changpin Li,et al.  The synchronization of three fractional differential systems , 2007 .

[76]  Fawang Liu,et al.  Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..

[77]  Changpin Li,et al.  A note on the finite element method for the space-fractional advection diffusion equation , 2010, Comput. Math. Appl..

[78]  Ravi P. Agarwal,et al.  Stability analysis of fractional differential system with Riemann-Liouville derivative , 2010, Math. Comput. Model..

[79]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[80]  Xinlong Feng,et al.  Finite element method for two‐dimensional time‐fractional tricomi‐type equations , 2013 .

[81]  Mehdi Dehghan,et al.  Meshless Local Petrov-Galerkin and RBFs CollocationMethods for Solving 2D Fractional Klein-KramersDynamics Equation on Irregular Domains , 2015 .

[82]  Yingjun Jiang,et al.  Moving finite element methods for time fractional partial differential equations , 2013 .

[83]  Bangti Jin,et al.  An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid , 2014, Numerische Mathematik.

[84]  Weihua Deng,et al.  The evolution of chaotic dynamics for fractional unified system , 2008 .

[85]  Guanhua Huang,et al.  A finite element solution for the fractional advection–dispersion equation , 2008 .

[86]  Changpin Li,et al.  Higher order finite difference method for the reaction and anomalous-diffusion equation☆☆☆ , 2014 .

[87]  Fawang Liu,et al.  Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes' first problem for a heated generalized second grade fluid , 2011, Comput. Math. Appl..

[88]  Fawang Liu,et al.  Stability and convergence of a finite volume method for the space fractional advection-dispersion equation , 2014, J. Comput. Appl. Math..

[89]  Yangquan Chen,et al.  Computers and Mathematics with Applications Numerical Approximation of Nonlinear Fractional Differential Equations with Subdiffusion and Superdiffusion , 2022 .

[90]  M. Shamsi,et al.  A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations , 2011 .

[91]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[92]  D. Vieru,et al.  The Rayleigh–Stokes problem for an edge in a generalized Oldroyd-B fluid , 2009 .

[93]  Mehdi Dehghan,et al.  A tau approach for solution of the space fractional diffusion equation , 2011, Comput. Math. Appl..

[94]  Mostafa Abbaszadeh,et al.  Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives , 2013 .