Failure detection for quasi LPV systems

By using the concept of parameter varying (CA)invariant subspace and parameter varying unobservability subspace, this paper investigates the problem of fault detection and isolation for quasi linear parameter varying (qLPV) systems. The so called detection filters approach, formulated as the fundamental problem of residual generation (FPRG) for linear time invariant (LTI) systems is extended for a class of qLPV systems. The parameter dependence in the state matrix of these qLPV systems is assumed to be in affine form. The question of stability is addressed in the terms of Lyapunov quadratic stability by using an LMI technique. A numerical example is also provided.

[1]  Hassan Hammouri,et al.  Observer-based approach to fault detection and isolation for nonlinear systems , 1999, IEEE Trans. Autom. Control..

[2]  Rami Mangoubi,et al.  Robust Estimation and Failure Detection , 1998 .

[3]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[4]  Rolf Isermann,et al.  Supervision, fault-detection and fault-diagnosis methods — An introduction , 1997 .

[5]  S. Rami Mangoubi,et al.  Model Based Fault Detection: The Optimal Past, The Robust Present and a Few Thoughts on the Future , 2000 .

[6]  A. Isidori,et al.  On the observability codistributions of a nonlinear system , 2000 .

[7]  László Keviczky,et al.  Robust detection filter design in the presence of time-varying system perturbations , 1997, Autom..

[8]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[9]  J. Bokor,et al.  Detection Filter Design for LPV Systems , 2000 .

[10]  A. Willsky,et al.  Failure detection and identification , 1989 .

[11]  Michèle Basseville,et al.  Detecting changes in signals and systems - A survey , 1988, Autom..

[12]  Rami Mangoubi Robust Estimation and Failure Detection: A Concise Treatment , 1998 .

[13]  S. P. Bhattacharyya Generalized Controllability, (A, B)-invariant Subspaces and Parameter Invariant Control , 1983 .

[14]  S. Bittanti,et al.  Affine Parameter-Dependent Lyapunov Functions and Real Parametric Uncertainty , 1996 .

[15]  M. Massoumnia A geometric approach to the synthesis of failure detection filters , 1986 .

[16]  Giovanni Marro,et al.  On the robust controlled invariant , 1987 .

[17]  Hassan Hammouri,et al.  A Geometric Approach to Fault Detection and Isolation for Bilinear Systems: Application to Heat Exchangers , 2000 .

[18]  Gary J. Balas,et al.  Design of Nonlinear Controllers for Active Vehicle Suspensions Using Parameter-Varying Control Synthesis , 2000 .

[19]  Salem A K Al-Assadi Design of non-linear control systems , 1979 .

[20]  Zoltán Szabó,et al.  Invariant subspaces for LPV systems and their applications , 2003, IEEE Trans. Autom. Control..

[21]  Alberto Isidori,et al.  A Geometric Approach to Nonlinear Fault Detection and Isolation , 2000 .

[22]  Gary J. Balas,et al.  Flight control of a tailless aircraft via linear parameter-varying techniques , 1999 .

[23]  P. Frank,et al.  Survey of robust residual generation and evaluation methods in observer-based fault detection systems , 1997 .

[24]  Andres Marcos,et al.  Linear Parameter Varying Modeling of the Boeing 747-100/200 Longitudinal Motion , 2001 .

[25]  J. Bokor,et al.  DETECTION FILTER DESIGN FOR LPV SYSTEMS – A GEOMETRIC APPROACH , 2002 .

[26]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[27]  A. Isidori Nonlinear Control Systems , 1985 .