A generic archive technique for enhancing the niching performance of evolutionary computation

The performance of a multimodal evolutionary algorithm is highly sensitive to the setting of population size. This paper introduces a generic archive technique to reduce the importance of properly setting the population size parameter. The proposed archive technique contains two components: subpopulation identification and convergence detection. The first component is used to identify subpopulations in a number of individuals while the second one is used to determine whether a subpopulation is converged. By using the two components, converged subpopulations are identified, and then, individuals in the converged subpopulations are stored in an external archive and re-initialized to search for other optima. We integrate the archive technique with several state-of-the-art PSO-based multimodal algorithms. Experiments are carried out on a recently proposed multimodal problem set to investigate the effect of the archive technique. The experimental results show that the proposed method can reduce the influence of the population size parameter and improve the performance of multimodal algorithms.

[1]  Frans van den Bergh,et al.  A NICHING PARTICLE SWARM OPTIMIZER , 2002 .

[2]  René Thomsen,et al.  Multimodal optimization using crowding-based differential evolution , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[3]  Xiaodong Li,et al.  Benchmark Functions for CEC'2013 Special Session and Competition on Niching Methods for Multimodal Function Optimization' , 2013 .

[4]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[5]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[6]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[7]  Andries P. Engelbrecht,et al.  A Parallel Vector-Based Particle Swarm Optimizer , 2005 .

[8]  Alain Pétrowski,et al.  A clearing procedure as a niching method for genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[9]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[10]  Ender Özcan,et al.  Particle Swarms for Multimodal Optimization , 2007, ICANNGA.

[11]  Xiaodong Li,et al.  A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio , 2007, GECCO '07.

[12]  Ponnuthurai N. Suganthan,et al.  Real-parameter evolutionary multimodal optimization - A survey of the state-of-the-art , 2011, Swarm Evol. Comput..

[13]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[14]  Ponnuthurai N. Suganthan,et al.  A Distance-Based Locally Informed Particle Swarm Model for Multimodal Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[15]  P. John Clarkson,et al.  Erratum: A Species Conserving Genetic Algorithm for Multimodal Function Optimization , 2003, Evolutionary Computation.

[16]  R. Brits,et al.  Solving systems of unconstrained equations using particle swarm optimization , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[17]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[18]  Samir W. Mahfoud A Comparison of Parallel and Sequential Niching Methods , 1995, ICGA.

[19]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[20]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[21]  Carlos A. Coello Coello,et al.  A Review of Particle Swarm Optimization Methods Used for Multimodal Optimization , 2009, Innovations in Swarm Intelligence.

[22]  Xiaodong Li,et al.  Erratum to "Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology" [Feb 10 150-169] , 2010, IEEE Trans. Evol. Comput..

[23]  Michael N. Vrahatis,et al.  Modification of the Particle Swarm Optimizer for Locating All the Global Minima , 2001 .

[24]  Xiaodong Li,et al.  Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology , 2010, IEEE Transactions on Evolutionary Computation.

[25]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .