Atomic frequency comb memory with spin-wave storage in 153Eu3 +:Y2SiO5
暂无分享,去创建一个
N. Gisin | B. Lauritzen | N. Gisin | N. Timoney | M. Afzelius | M. Afzelius | I. Usmani | B. Lauritzen | N. Timoney | I. Usmani
[1] W. Munro,et al. Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.
[2] N. Gisin,et al. Spectroscopic investigations of Eu 3+ :Y 2 SiO 5 for quantum memory applications , 2012 .
[3] Nicolas Gisin,et al. Heralded quantum entanglement between two crystals , 2011, Nature Photonics.
[4] Lars Rippe,et al. Frequency stabilization to 6 [times] 10-16 via spectral-hole burning , 2011, 1106.0520.
[5] N. Gisin,et al. Photon-pair source with controllable delay based on shaped inhomogeneous broadening of rare-earth-metal-doped solids , 2011, 1101.6005.
[6] T. Chaneliere,et al. Highly multimode storage in a crystal , 2011 .
[7] F. Bussières,et al. Broadband waveguide quantum memory for entangled photons , 2010, Nature.
[8] Félix Bussières,et al. Quantum storage of photonic entanglement in a crystal , 2010, Nature.
[9] N. Gisin,et al. Spin-wave storage using chirped control fields in atomic frequency comb-based quantum memory , 2010, 1008.2284.
[10] Christoph Simon,et al. Impedance-matched cavity quantum memory , 2010, 1004.2469.
[11] S. Moiseev,et al. Efficient multimode quantum memory based on photon echo in an optimal QED cavity , 2010, 1004.1370.
[12] J. H. Müller,et al. Quantum memories , 2010, 1003.1107.
[13] Nicolas Gisin,et al. Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. , 2010, Nature communications.
[14] A Walther,et al. Storage and recall of weak coherent optical pulses with an efficiency of 25%. , 2010, Physical review letters.
[15] T. Chanelière,et al. Efficiency optimization for atomic frequency comb storage , 2009, 0911.4359.
[16] N. Gisin,et al. Towards an efficient atomic frequency comb quantum memory , 2009, 0911.2145.
[17] Christoph Simon,et al. Demonstration of atomic frequency comb memory for light with spin-wave storage. , 2009, Physical review letters.
[18] Yan Feng,et al. High power narrowband 589 nm frequency doubled fibre laser source. , 2009, Optics express.
[19] Nicolas Gisin,et al. Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.
[20] S. A. Moiseev,et al. Photon‐echo quantum memory in solid state systems , 2009 .
[21] M. Afzelius,et al. Efficient light storage in a crystal using an atomic frequency comb , 2009, 0902.2048.
[22] Y. O. Dudin,et al. Long-lived quantum memory , 2009 .
[23] N. Gisin,et al. Multimode quantum memory based on atomic frequency combs , 2008, 0805.4164.
[24] I. Walmsley,et al. Multimode memories in atomic ensembles. , 2008, Physical review letters.
[25] J. Longdell,et al. Measurement of the ground-state hyperfine coherence time of 151Eu3+:Y2SiO5 , 2007 .
[26] N. Gisin,et al. Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.
[27] Matthew Sellars,et al. Characterization of the hyperfine interaction in europium-doped yttrium orthosilicate and europium chloride hexahydrate , 2006 .
[28] J. Longdell,et al. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. , 2005, Physical review letters.
[29] Gilles Brassard,et al. Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.
[30] Roger M. Macfarlane,et al. Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu 3 + : Y 2 SiO 5 , 2003 .
[31] J. Cirac,et al. Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.
[32] Wolfgang Dür,et al. Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .
[33] Sun,et al. Ultraslow optical dephasing in Eu3+:Y2SiO5. , 1994, Physical Review Letters.
[34] N. Uesugi,et al. Nonlinear laser spectroscopy of eu3+: Y2sio5 and its application to time-domain optical memory , 1992 .
[35] N. Uesugi,et al. Ultralong optical dephasing time in Eu(3+):Y(2)SiO(5). , 1991, Optics letters.