Atomic frequency comb memory with spin-wave storage in 153Eu3 +:Y2SiO5

153Eu3 +:Y2SiO5 is a very attractive candidate for a long-lived, multimode quantum memory due to the long spin coherence time (∼15 ms), the relatively large hyperfine splitting (100 MHz) and the narrow optical homogeneous linewidth (∼100 Hz). Here we show an atomic frequency comb memory with spin-wave storage in a promising material 153Eu3 +:Y2SiO5, reaching storage times slightly beyond 10 μs. We analyse the efficiency of the storage process and discuss ways of improving it. We also measure the inhomogeneous spin linewidth of 153Eu3 +:Y2SiO5, which we find to be 69 ± 3 kHz. These results represent a further step towards realizing a long-lived, multimode solid-state quantum memory.

[1]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[2]  N. Gisin,et al.  Spectroscopic investigations of Eu 3+ :Y 2 SiO 5 for quantum memory applications , 2012 .

[3]  Nicolas Gisin,et al.  Heralded quantum entanglement between two crystals , 2011, Nature Photonics.

[4]  Lars Rippe,et al.  Frequency stabilization to 6 [times] 10-16 via spectral-hole burning , 2011, 1106.0520.

[5]  N. Gisin,et al.  Photon-pair source with controllable delay based on shaped inhomogeneous broadening of rare-earth-metal-doped solids , 2011, 1101.6005.

[6]  T. Chaneliere,et al.  Highly multimode storage in a crystal , 2011 .

[7]  F. Bussières,et al.  Broadband waveguide quantum memory for entangled photons , 2010, Nature.

[8]  Félix Bussières,et al.  Quantum storage of photonic entanglement in a crystal , 2010, Nature.

[9]  N. Gisin,et al.  Spin-wave storage using chirped control fields in atomic frequency comb-based quantum memory , 2010, 1008.2284.

[10]  Christoph Simon,et al.  Impedance-matched cavity quantum memory , 2010, 1004.2469.

[11]  S. Moiseev,et al.  Efficient multimode quantum memory based on photon echo in an optimal QED cavity , 2010, 1004.1370.

[12]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[13]  Nicolas Gisin,et al.  Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. , 2010, Nature communications.

[14]  A Walther,et al.  Storage and recall of weak coherent optical pulses with an efficiency of 25%. , 2010, Physical review letters.

[15]  T. Chanelière,et al.  Efficiency optimization for atomic frequency comb storage , 2009, 0911.4359.

[16]  N. Gisin,et al.  Towards an efficient atomic frequency comb quantum memory , 2009, 0911.2145.

[17]  Christoph Simon,et al.  Demonstration of atomic frequency comb memory for light with spin-wave storage. , 2009, Physical review letters.

[18]  Yan Feng,et al.  High power narrowband 589 nm frequency doubled fibre laser source. , 2009, Optics express.

[19]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[20]  S. A. Moiseev,et al.  Photon‐echo quantum memory in solid state systems , 2009 .

[21]  M. Afzelius,et al.  Efficient light storage in a crystal using an atomic frequency comb , 2009, 0902.2048.

[22]  Y. O. Dudin,et al.  Long-lived quantum memory , 2009 .

[23]  N. Gisin,et al.  Multimode quantum memory based on atomic frequency combs , 2008, 0805.4164.

[24]  I. Walmsley,et al.  Multimode memories in atomic ensembles. , 2008, Physical review letters.

[25]  J. Longdell,et al.  Measurement of the ground-state hyperfine coherence time of 151Eu3+:Y2SiO5 , 2007 .

[26]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[27]  Matthew Sellars,et al.  Characterization of the hyperfine interaction in europium-doped yttrium orthosilicate and europium chloride hexahydrate , 2006 .

[28]  J. Longdell,et al.  Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. , 2005, Physical review letters.

[29]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[30]  Roger M. Macfarlane,et al.  Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu 3 + : Y 2 SiO 5 , 2003 .

[31]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[32]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[33]  Sun,et al.  Ultraslow optical dephasing in Eu3+:Y2SiO5. , 1994, Physical Review Letters.

[34]  N. Uesugi,et al.  Nonlinear laser spectroscopy of eu3+: Y2sio5 and its application to time-domain optical memory , 1992 .

[35]  N. Uesugi,et al.  Ultralong optical dephasing time in Eu(3+):Y(2)SiO(5). , 1991, Optics letters.