Yes, but Did It Work?: Evaluating Variational Inference
暂无分享,去创建一个
Aki Vehtari | Andrew Gelman | Daniel Simpson | Yuling Yao | A. Gelman | Aki Vehtari | Daniel P. Simpson | Yuling Yao
[1] Robert L. SielkenJr.. Stopping times for stochastic approximation procedures , 1973 .
[2] R. Sielken. Stopping times for stochastic approximation procedures , 1973 .
[3] H. Braun,et al. On a new stopping rule for stochastic approximation , 1982 .
[4] J. Geweke,et al. Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .
[5] G. Pflug. Non-asymptotic confidence bounds for stochastic approximation algorithms with constant step size , 1990 .
[6] Jeffrey L. Anderson. A Method for Producing and Evaluating Probabilistic Forecasts from Ensemble Model Integrations , 1996 .
[7] Louis H. Y. Chen,et al. Normal approximation under local dependence , 2004, math/0410104.
[8] Donald B. Rubin,et al. Validation of Software for Bayesian Models Using Posterior Quantiles , 2006 .
[9] E. Ionides. Truncated Importance Sampling , 2008 .
[10] S. MacEachern,et al. Case-deletion importance sampling estimators: Central limit theorems and related results , 2008, 0807.0725.
[11] Drew D. Creal,et al. Testing the assumptions behind importance sampling , 2009 .
[12] Yishay Mansour,et al. Learning Bounds for Importance Weighting , 2010, NIPS.
[13] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.
[14] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[15] Daan Wierstra,et al. Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.
[16] Sean Gerrish,et al. Black Box Variational Inference , 2013, AISTATS.
[17] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[18] G. Crooks. On Measures of Entropy and Information , 2015 .
[19] Yasumasa Fujisaki,et al. A stopping rule for stochastic approximation , 2015, Autom..
[20] A. Gelman,et al. Pareto Smoothed Importance Sampling , 2015, 1507.02646.
[21] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.
[22] Richard E. Turner,et al. Rényi Divergence Variational Inference , 2016, NIPS.
[23] Dustin Tran,et al. Automatic Differentiation Variational Inference , 2016, J. Mach. Learn. Res..
[24] Aki Vehtari,et al. Sparsity information and regularization in the horseshoe and other shrinkage priors , 2017, 1707.01694.
[25] Panos Toulis,et al. Convergence diagnostics for stochastic gradient descent with constant step size , 2017, ArXiv.
[26] Dustin Tran,et al. Variational Inference via \chi Upper Bound Minimization , 2016, NIPS.
[27] Mehryar Mohri,et al. Relative deviation learning bounds and generalization with unbounded loss functions , 2013, Annals of Mathematics and Artificial Intelligence.
[28] Michael I. Jordan,et al. Covariances, Robustness, and Variational Bayes , 2017, J. Mach. Learn. Res..