Nonholonomic manifolds and nilpotent analysis

[1]  Wei-Liang Chow Über Systeme von liearren partiellen Differentialgleichungen erster Ordnung , 1940 .

[2]  Wei-Liang Chow Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .

[3]  J. Gillis,et al.  Probability and Related Topics in Physical Sciences , 1960 .

[4]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[5]  L. Young,et al.  Lectures on the Calculus of Variations and Optimal Control Theory. , 1971 .

[6]  H. Sussmann Orbits of families of vector fields and integrability of distributions , 1973 .

[7]  R. Goodman Nilpotent Lie Groups , 1976 .

[8]  Structure of nilpotent Lie algebras and Lie groups , 1976 .

[9]  G. Métivier Fonction spectrale et valeurs propres d'une classe d'operateurs non elliptiques , 1976 .

[10]  E. Stein,et al.  Hypoelliptic differential operators and nilpotent groups , 1976 .

[11]  B. Gaveau Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents , 1977 .

[12]  A. Vershik,et al.  Classical and non-classical dynamics with constraints , 1984 .

[13]  A. Sánchez-Calle Fundamental solutions and geometry of the sum of squares of vector fields , 1984 .

[14]  J. Mitchell On Carnot-Carathéodory metrics , 1985 .

[15]  Fundamental solutions for second order subelliptic operators , 1986 .

[16]  R. Strichartz Sub-Riemannian geometry , 1986 .

[17]  N. Varopoulos Analysis on Lie groups , 1988 .

[18]  V. Gershkovich On normal form of distribution jets , 1988 .

[19]  A. Vershik,et al.  The geometry of the nonholonomic sphere for three-dimensional lie group , 1988 .