Extending the Modified Inertia Representation to Constrained Rigid Multibody Systems

[1]  Domenico Guida,et al.  A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems , 2018, Archive of Applied Mechanics.

[2]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems , 1994 .

[3]  Yinghua Liu,et al.  A constraint violation suppressing formulation for spatial multibody dynamics with singular mass matrix , 2016 .

[4]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[5]  Shuo-Fang Liu,et al.  A scale development of industrial designer ability index through quality function deployment and grey relational analysis methods , 2016 .

[6]  J. Marsden,et al.  Mechanical integrators derived from a discrete variational principle , 1997 .

[7]  E. Bayo,et al.  Singularity-free augmented Lagrangian algorithms for constrained multibody dynamics , 1994, Nonlinear Dynamics.

[8]  József Kövecses,et al.  A Penalty Formulation for Dynamics Analysis of Redundant Mechanical Systems , 2009 .

[9]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge , 1994 .

[10]  Javier Cuadrado,et al.  Index-3 divide-and-conquer algorithm for efficient multibody system dynamics simulations: theory and parallel implementation , 2018, Nonlinear Dynamics.

[11]  J. G. Jalón,et al.  Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces , 2013 .

[12]  Adrian Sandu,et al.  Dynamic Response Optimization of Complex Multibody Systems in a Penalty Formulation using Adjoint Sensitivity , 2014, ArXiv.

[13]  Steen Krenk,et al.  Conservative rigid body dynamics by convected base vectors with implicit constraints , 2014 .

[14]  Jingchen Hu,et al.  An efficient high‐precision recursive dynamic algorithm for closed‐loop multibody systems , 2019, International Journal for Numerical Methods in Engineering.

[15]  C. Pappalardo A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems , 2015 .

[16]  Firdaus E. Udwadia,et al.  Equations of motion for general constrained systems in Lagrangian mechanics , 2010 .

[17]  W. Zhong,et al.  On the Numerical Influences of Inertia Representation for Rigid Body Dynamics in Terms of Unit Quaternion , 2016 .

[18]  J. Argyris An excursion into large rotations , 1982 .

[19]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[20]  Daniel Dopico,et al.  Behaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurations , 2016, Nonlinear Dynamics.

[21]  Sotirios Natsiavas,et al.  Application of an augmented Lagrangian approach to multibody systems with equality motion constraints , 2020, Nonlinear Dynamics.

[22]  József Kövecses,et al.  Unique minimum norm solution to redundant reaction forces in multibody systems , 2017 .

[23]  F. Aghili,et al.  Modeling and analysis of multiple impacts in multibody systems under unilateral and bilateral constrains based on linear projection operators , 2019, Multibody System Dynamics.

[24]  Gene H. Golub,et al.  Matrix computations , 1983 .

[25]  Juan C. García Orden,et al.  A Conservative Augmented Lagrangian Algorithm for the Dynamics of Constrained Mechanical Systems , 2006 .

[26]  Janusz Frączek,et al.  Free-body-diagram method for the uniqueness analysis of reactions and driving forces in redundantly constrained multibody systems with nonholonomic constraints , 2019, Mechanism and Machine Theory.

[27]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[28]  Igor Fernández de Bustos,et al.  Direct integration of the equations of multibody dynamics using central differences and linearization , 2019 .

[29]  M. A. Serna,et al.  A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems , 1988 .

[30]  J. W. Humberston Classical mechanics , 1980, Nature.

[31]  Firdaus E. Udwadia,et al.  ON GENERAL NONLINEAR CONSTRAINED MECHANICAL SYSTEMS , 2013 .

[32]  P. Flores,et al.  On the constraints violation in forward dynamics of multibody systems , 2017 .

[33]  R. Ledesma,et al.  Augmented lagrangian and mass-orthogonal projection methods for constrained multibody dynamics , 1996 .

[34]  C. Pappalardo,et al.  Forward and inverse dynamics of nonholonomic mechanical systems , 2014 .

[35]  József Kövecses,et al.  Use of penalty formulations in dynamic simulation and analysis of redundantly constrained multibody systems , 2013 .

[37]  W. Blajer Augmented Lagrangian Formulation: Geometrical Interpretation and Application to Systems with Singularities and Redundancy , 2002 .

[38]  Rong Liu,et al.  Dynamic modeling of dual-arm cooperating manipulators based on Udwadia–Kalaba equation , 2016 .

[39]  Phailaung Phohomsiri,et al.  Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Peter Betsch,et al.  Constrained integration of rigid body dynamics , 2001 .

[41]  Janusz Frączek,et al.  Comparison of Selected Methods of Handling Redundant Constraints in Multibody Systems Simulations , 2013 .