Shannon Information Entropy in Heavy-ion Collisions

The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-ion collisions (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc, are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron collisions, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-ion collision physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.

[1]  Damian R. Sowinski,et al.  Information-entropic stability bound for compact objects: Application to Q-balls and the Chandrasekhar limit of polytropes , 2013, 1307.0530.

[2]  C. W. Ma,et al.  Isobaric yield ratio difference between the 140 $A$ MeV $^{58, 64}$Ni + $^{9}$Be reactions studied by antisymmetric molecular dynamics model , 2015, 1510.08105.

[3]  Jun Su,et al.  Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions , 2016, 1603.08149.

[4]  G. Alexander,et al.  On Bose–Einstein correlations in AA collisions versus energy, transverse mass and momentum , 2013 .

[5]  Damian R. Sowinski,et al.  Information-entropic signature of the critical point , 2015, 1501.06800.

[6]  Surface entropy in statistical emission of massive fragments from equilibrated nuclear systems , 2002, nucl-th/0207064.

[7]  Lindenstruth,et al.  Probing the nuclear liquid-gas phase transition. , 1995, Physical review letters.

[8]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[9]  Yongjia Wang,et al.  The effect of symmetry potential on the balance energy of light particles emitted from mass symmetric heavy-ion collisions with isotopes, isobars and isotones , 2012 .

[10]  R. Rocha,et al.  Entropic information of dynamical AdS/QCD holographic models , 2016, 1605.00294.

[11]  J. Sethna Statistical Mechanics: Entropy, Order Parameters, and Complexity , 2021 .

[12]  S. Gupta,et al.  Estimates for temperature in projectile-like fragments in geometric and transport models , 2013, 1309.4064.

[13]  Rudolph C. Hwa,et al.  Critical behavior of hadronic fluctuations and the effect of final-state randomization , 1999 .

[14]  D. M. Dantas,et al.  Bounds on topological Abelian string-vortex and string-cigar from information-entropic measure , 2016, 1601.00076.

[15]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[16]  G. Karapetyan Fine-tuning the Color-Glass Condensate with the nuclear configurational entropy , 2016, 1612.09564.

[17]  Zhuo,et al.  Study of in-medium NN inelastic cross section from relativistic Boltzmann-Uehling-Uhlenbeck approach. , 1994, Physical review. C, Nuclear physics.

[18]  R. Rocha,et al.  Configurational entropy of anti-de Sitter black holes , 2016, 1612.03289.

[19]  A Text-Book of Heat , 1945, Nature.

[20]  Roldao da Rocha,et al.  AdS/QCD duality and the quarkonia holographic information entropy , 2017, 1710.07383.

[21]  Chun-Wang Ma,et al.  An improved thermometer for intermediate-mass fragments , 2016 .

[22]  J. Randrup,et al.  Dynamical models for fragment formation , 2006 .

[23]  A. Mukhopadhyay,et al.  Erraticity analysis of multiparticle production in nucleus-nucleus interactions at relativistic energies , 2005 .

[24]  Antisymmetrized Version of Molecular Dynamics with Two-Nucleon Collisions and Its Application to Heavy Ion Reactions , 1992 .

[25]  Shan-Shan Wang,et al.  A Model Comparison Study of Fragment Production in 140 A MeV 58,64 Ni+ 9 Be Reactions , 2015 .

[27]  B. Blank,et al.  Modified empirical parametrization of fragmentation cross-sections , 1999, nucl-ex/9911006.

[28]  D. Lacroix,et al.  Energy dependence of the nucleus-nucleus potential close to the Coulomb barrier , 2008, 0804.2823.

[29]  A. Mekjian,et al.  Symmetry and surface symmetry energies in finite nuclei , 2010, 1003.4864.

[30]  A. S. Dutra,et al.  Information-Entropic Measure of Energy-Degenerate Kinks in Two-Field Models , 2014, 1409.0029.

[31]  W. Hongwei,et al.  Isospin dependence of projectile-like fragment production at intermediate energies , 2009 .

[32]  S. Yennello,et al.  Isoscaling of heavy projectile residues and N /Z equilibration in peripheral heavy-ion collisions below the Fermi energy , 2014 .

[33]  Chun-Wang Ma,et al.  Temperature of intermediate mass fragments in simulated 40Ca + 40Ca reactions around the Fermi energies by AMD model , 2016 .

[34]  Information entropy in fragmenting systems , 2002, nucl-th/0201044.

[35]  A. Hirsch,et al.  Comment on “Pre-equilibrium particle emission and critical exponent analysis” , 1997 .

[36]  V. Šimák,et al.  Entropy in multiparticle production and ultimate multiplicity scaling , 1988 .

[37]  Daniel de Florian,et al.  Phenomenology of forward hadrons in deep inelastic scattering: Fracture functions and its Q 2 evolution , 1997 .

[38]  P. Sahu,et al.  Experimental reconstruction of excitation energies of primary hot isotopes in heavy ion collisions near the Fermi energy , 2013 .

[39]  B. Kamys,et al.  Ranking and validation of spallation models for isotopic production cross sections of heavy residua , 2017 .

[40]  Moment analysis and Zipf law , 2006, nucl-ex/0610028.

[41]  I. Thompson,et al.  Effects of the in-medium NN interaction on total reaction and neutron removal cross sections , 2002 .

[42]  M. Tsang,et al.  Isotopic compositions and scalings , 2006 .

[43]  Lindenstruth,et al.  Determination of critical exponents from the multifragmentation of gold nuclei. , 1994, Physical review letters.

[44]  S. Gupta,et al.  Isoscaling in statistical models , 2001 .

[45]  P. Sahu,et al.  Isobaric yield ratios and the symmetry energy in heavy-ion reactions near the Fermi energy , 2010 .

[46]  H. Krappe,et al.  Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations , 1979 .

[47]  Machleidt,et al.  Microscopic calculation of in-medium nucleon-nucleon cross sections. , 1993, Physical review. C, Nuclear physics.

[48]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[49]  Shen Wen-qing,et al.  In-medium nucleon-nucleon cross section and its effect on total nuclear reaction cross section , 1998 .

[50]  R. Hasan,et al.  Chaoticity in multiparticle production in Si-emulsion collisions at 14.6 A GeV , 2002 .

[51]  Maruyama,et al.  Fragment formation studied with antisymmetrized version of molecular dynamics with two-nucleon collisions. , 1992, Physical review letters.

[52]  Hwa,et al.  In search for signs of chaos in branching processes. , 1995, Physical review letters.

[53]  D. Lacroix,et al.  Event generator for nuclear collisions at intermediate energies , 2004 .

[54]  John W. Negele,et al.  The mean-field theory of nuclear structure and dynamics , 1982 .

[55]  Y. Niu,et al.  An Isoratio Method to Study Free Energy and Temperature Effects in Intermediate Mass Fragments Produced in Heavy-Ion Collisions* , 2016 .

[56]  J. Liu,et al.  Primary isotope yields and characteristic properties of the fragmenting source in heavy-ion reactions near the Fermi energy , 2014, 1404.5830.

[57]  Yongjia Wang,et al.  Influence of the symmetry energy on the balance energy of the directed flow , 2012 .

[58]  Yugang Ma,et al.  Isobaric yield ratio difference and Shannon information entropy , 2015 .

[59]  Shen,et al.  Onset of multifragmentation in intermediate energy light asymmetrical collisions. , 1995, Physical review. C, Nuclear physics.

[60]  P. Bonche,et al.  One-dimensional nuclear dynamics in the time-dependent Hartree-Fock approximation , 1976 .

[61]  Machleidt,et al.  Microscopic calculation of in-medium proton-proton cross sections. , 1993, Physical review. C, Nuclear physics.

[62]  Y. Choi,et al.  Individual fragment yields and determination of the critical exponent σ , 1996 .

[63]  K. Lukierska-Walasek,et al.  Zipf's law and phase transition , 2013, 1312.7831.

[64]  Mikhail Prokopenko,et al.  An information-theoretic primer on complexity, self-organization, and emergence , 2009 .

[65]  Wei Hui-ling,et al.  The Symmetry Energy from the Neutron-Rich Nucleus Produced in the Intermediate-Energy 40,48 Ca and 58,64 Ni Projectile Fragmentation * , 2012 .

[66]  Z. Bai,et al.  Freezeout concept and dynamical transport model in intermediate-energy heavy-ion reactions , 2015 .

[67]  Chun-Wang Ma,et al.  Neutron density distributions of neutron-rich nuclei studied with the isobaric yield ratio difference , 2014, 1408.5617.

[68]  P. Reinhard,et al.  Boost-invariant mean field approximation and the nuclear Landau-Zener effect , 2007, nucl-th/0703082.

[69]  J. T. Childers,et al.  UvA-DARE Measurement of the distributions of event-by-event flow harmonics in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector at the LHC , 2013 .

[70]  D. Ghosh,et al.  Analysis of fluctuation of fluctuations in 32S–AgBr interactions at 200 A GeV , 2002 .

[71]  Roger A. Baldwin,et al.  Use of Maximum Entropy Modeling in Wildlife Research , 2009, Entropy.

[72]  A. Ahmad,et al.  Erraticity behaviour in relativistic nucleus–nucleus collisions , 2004 .

[73]  R. Rocha,et al.  Stability of the graviton Bose–Einstein condensate in the brane-world , 2016, 1610.01572.

[74]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[75]  R. Rocha,et al.  Configurational entropy in brane-world models , 2015 .

[76]  D. Ghosh,et al.  Chaos in compound hadrons in high-energy hadronic interactions , 2010 .

[77]  R. Botet,et al.  Universal fluctuations in heavy-ion collisions in the Fermi energy domain. , 2001, Physical Review Letters.

[78]  A. Menchaca-rocha,et al.  Critical behavior in light nuclear systems: Experimental aspects , 2004, nucl-ex/0410018.

[79]  Z. Kohley,et al.  Symmetry energy dependence of long-timescale isospin transport , 2014, 1412.4135.

[80]  N. Buyukcizmeci,et al.  Production of neutron-rich exotic nuclei in projectile fragmentation at Fermi energies , 2017 .

[81]  A. Ono,et al.  Antisymmetrized molecular dynamics for heavy ion collisions , 2004 .

[82]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[83]  C. Dorso,et al.  Lyapunov exponent, generalized entropies and fractal dimensions of hot drops , 1999, chao-dyn/9909019.

[84]  Margaret Nichols Trans , 2015, De-centering queer theory.

[85]  W. Waugh,et al.  Collaboration and Leadership for Effective Emergency Management , 2006 .

[86]  A. Bonasera,et al.  Constrained molecular dynamics approach to fermionic systems , 2001 .

[87]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[88]  Mohsen Rezaei,et al.  Investigating the efficiency of information entropy and fuzzy theories to classification of groundwater samples for drinking purposes: Lenjanat Plain, Central Iran , 2016, Environmental Earth Sciences.

[89]  R. Khordad,et al.  Application of Tietz Potential to Study Singlet-Triplet Transition of a Two-Electron Quantum Dot , 2014 .

[90]  Yugang Ma,et al.  A scaling phenomenon in the difference of Shannon information uncertainty of fragments in heavy-ion collisions , 2015, 1510.08095.

[91]  X. Campi Signals of a phase transition in nuclear multifragmentation , 1988 .

[92]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[93]  S. Mallik,et al.  Effect of particle fluctuation on isoscaling and isobaric yield ratio of nuclear multifragmentation , 2013, 1604.00194.

[94]  Zhigang Xiao,et al.  Evidence of slow relaxation of isospin degree of freedom , 2002 .

[95]  M. Gleiser,et al.  Transition to order after hilltop inflation , 2014, 1401.6225.

[96]  Chun-Wang Ma,et al.  Residue Coulomb interaction among isobars and its influence in symmetry energy of neutron-rich fragment , 2014, 1402.5493.

[97]  A. S. Dutra,et al.  Entropic information for travelling solitons in Lorentz and CPT breaking systems , 2015, 1501.02000.

[98]  G. Veneziano,et al.  On the transverse spread of QCD jets , 1979 .

[99]  Sengupta,et al.  Fragmentation and multifragmentation of 10.6A GeV gold nuclei. , 1995, Physical review. C, Nuclear physics.

[100]  G. Karapetyan,et al.  The nuclear configurational entropy impact parameter dependence in the Color-Glass Condensate , 2017, 1705.10617.

[101]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[102]  S. Hudan,et al.  Timescale for isospin equilibration in projectile breakup , 2014 .

[103]  Shuai Liu,et al.  A Novel Distance Metric: Generalized Relative Entropy , 2017, Entropy.

[104]  Fei-Yue Wang,et al.  Toward a Paradigm Shift in Social Computing: The ACP Approach , 2007, IEEE Intell. Syst..

[105]  Wei Hui-ling,et al.  Re-examination of Finite-Size Effects in Isobaric Yield Ratios Using a Statistical Abrasion-Ablation Model , 2013 .

[106]  W. G. Lynch,et al.  Nuclear thermometers from isotope yield ratios , 1997 .

[107]  W. Hongwei,et al.  A possible experimental observable for the determination of neutron skin thickness , 2008 .

[108]  Jun Yu,et al.  Isobaric yield ratio difference and neutron density difference in calcium isotopes , 2014 .

[109]  Chun-Wang Ma,et al.  Isotopic ratio, isotonic ratio, isobaric ratio and Shannon information uncertainty , 2014, 1409.3354.

[110]  M. Gleiser,et al.  Stability bounds on compact astrophysical objects from information-entropic measure , 2015, 1506.05722.

[111]  Chan Jin,et al.  Isobaric yield ratios in heavy-ion reactions, and symmetry energy of neutron-rich nuclei at intermediate energies , 2011, 1107.0131.

[112]  W. T. Cruz,et al.  Phase transitions in thick branes endorsed by entropic information , 2017, 1702.04042.

[113]  S. Souza,et al.  Comparisons of statistical multifragmentation and evaporation models for heavy-ion collisions , 2006 .

[114]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[115]  J. Schnack,et al.  Molecular dynamics for fermions , 2000, cond-mat/0001207.

[116]  D. Wales,et al.  Structure, dynamics, and thermodynamics of model (H2O)8 and (H2O)20 clusters , 1993 .

[117]  G. Veneziano,et al.  A simple algorithm for QCD jets , 1978 .

[118]  Cluster emission and phase transition behaviours in nuclear disassembly , 2001, nucl-th/0103009.

[119]  Yang Wang,et al.  Long-time drift of the isospin degree of freedom in heavy ion collisions , 2017 .

[120]  Emanuel Guariglia,et al.  Entropy and Fractal Antennas , 2016, Entropy.

[121]  J. Mazziotta,et al.  Rapid Automated Algorithm for Aligning and Reslicing PET Images , 1992, Journal of computer assisted tomography.

[122]  R. Rocha,et al.  Configurational entropy of glueball states , 2016, 1609.01258.

[123]  Gupta,et al.  Coulomb-modified Glauber model description of heavy-ion reaction cross sections. , 1990, Physical review. C, Nuclear physics.

[124]  Wang Zhaomin,et al.  The measurement of entropy indices in pp collisions at 400 GeV/c , 1998 .

[125]  F. Verbeure,et al.  Erraticity analysis of multiparticle production in π+p and K+p collisions at 250 GeV/c , 2003 .

[126]  Fermionic molecular dynamics SCV252SCV133 V2 , 1997, nucl-th/9703014.

[127]  Qingfeng Li,et al.  Difficulties in probing density dependent symmetry potential with the HBT interferometry , 2009, 0908.2680.

[128]  F. Jin,et al.  A simple method of evaluating margin-growing accuracy in image-guided radiation therapy. , 2016, The British journal of radiology.

[129]  S. Gupta,et al.  Boltzmann equation for heavy ion collisions , 1984 .

[130]  Yingwei Jin,et al.  An effective discretization method for disposing high-dimensional data , 2014, Inf. Sci..

[131]  Jian-song Wang,et al.  Isospin effect of fragmentation reactions induced by intermediate energy heavy ions and its disappearance , 2000 .

[132]  Shan-Shan Wang,et al.  Isobaric Yield Ratio Difference in Heavy-ion Collisions, and Comparison to Isoscaling , 2013, 1303.2924.

[133]  F. Deconinck,et al.  Information Processing in Medical Imaging , 1984, Springer Netherlands.

[134]  A. Bonasera,et al.  Constrained molecular dynamics II: An N-body approach to nuclear systems , 2005 .

[135]  D. Lacroix,et al.  One-body energy dissipation in fusion reactions from mean-field theory , 2008, 0811.4130.

[136]  XinJun Mao,et al.  Information Entropy-Based Metrics for Measuring Emergences in Artificial Societies , 2014, Entropy.

[137]  H. Kowalski,et al.  Impact parameter dependent color glass condensate dipole model , 2007, 0712.2670.

[138]  Lindenstruth,et al.  Onset of nuclear vaporization in 197Au+197Au collisions. , 1993, Physical review letters.

[139]  J. Dechargé,et al.  Hartree-Fock-Bogolyubov calculations with the D 1 effective interaction on spherical nuclei , 1980 .

[140]  M. Gleiser,et al.  Entropic measure for localized energy configurations: Kinks, bounces, and bubbles , 2011, 1111.5597.

[141]  A schematic model for fragmentation and phase transition in nuclear collisions , 1995, nucl-th/9501014.

[142]  D. Lacroix,et al.  Transport model simulations of projectile fragmentation reactions at 140 MeV/nucleon , 2008, 0804.2603.

[143]  Ma Yu-gang Nuclear Zpif-Type Plots , 2000 .

[144]  F. Gulminelli,et al.  Finite-size effects on the phase diagram of the thermodynamical cluster model , 2015, 1604.00172.

[145]  F. Jin,et al.  Interfractional variation in bladder volume and its impact on cervical cancer radiotherapy: Clinical significance of portable bladder scanner. , 2016, Medical physics.

[146]  A. Rezaeian Charged particle multiplicities in pA interactions at the LHC from the Color Glass Condensate , 2011, 1111.2312.

[147]  D. R. Dean,et al.  New approach to fragmentation reactions: The nuclear lattice model☆ , 1985 .

[148]  M. Gleiser,et al.  Information content of spontaneous symmetry breaking , 2012, 1205.3061.

[149]  S. Gupta,et al.  Nuclear properties at finite temperature in a two-component statistical model , 1999 .

[150]  Wang Zhaomin,et al.  Chaotic behavior of multiparticle production in pp collisions at 400 GeV/c , 1998 .

[151]  Xiaofeng Luo,et al.  Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview , 2017, Nuclear Science and Techniques.

[152]  G. Cardella,et al.  Correlations between emission timescale of fragments and isospin dynamics in $^{124}$Sn+$^{64}$Ni and $^{112}$Sn+$^{58}$Ni reactions at 35 AMeV , 2012, 1206.0697.

[153]  Aichelin Heavy systems at intermediate energies in the Boltzmann-Uehling-Uhlenbeck approach. , 1986, Physical review. C, Nuclear physics.

[154]  F. Jin,et al.  In Regard to Briere et al. , 2016, International journal of radiation oncology, biology, physics.

[155]  Xiaoyu Zhao,et al.  Adaptive molecular docking method based on information entropy genetic algorithm , 2015, Appl. Soft Comput..

[156]  Application of information theory in nuclear liquid gas phase transition , 1999, nucl-th/0102019.

[157]  Pawel Danielewicz,et al.  Quantum theory of nonequilibrium processes, I , 1984 .

[158]  Lindenstruth,et al.  Rise and fall of multifragment emission. , 1991, Physical review letters.

[159]  A. Stolz,et al.  Projectile fragmentation of Ca40, Ca48, Ni58, and Ni64 at 140 MeV/nucleon , 2006 .

[160]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[161]  Carlos Soares,et al.  Entropy-based discretization methods for ranking data , 2016, Inf. Sci..

[162]  B. Sherrill Designer Atomic Nuclei , 2008, Science.

[163]  Yanli Wang,et al.  Structure-Based Virtual Screening for Drug Discovery: a Problem-Centric Review , 2012, The AAPS Journal.

[164]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[165]  G. Veneziano,et al.  Jet calculus: A simple algorithm for resolving QCD jets , 1979 .

[166]  Roberto da Silva,et al.  Maximum Entropy Inferences on the Axion Mass in Models with Axion-Neutrino Interaction , 2017, 1703.02061.

[167]  Event-by-Event Fluctuations in Heavy Ion Collisions and the QCD Critical Point , 1999, hep-ph/9903292.

[168]  Molitoris,et al.  Vlasov-Uehling-Uhlenbeck theory of medium energy heavy ion reactions: Role of mean field dynamics and two body collisions. , 1985, Physical review. C, Nuclear physics.

[169]  R. Rocha,et al.  Information-entropic analysis of Korteweg–de Vries solitons in the quark–gluon plasma , 2017, 1706.01482.

[170]  Phase transition in a statistical model for nuclear multifragmentation , 1997, nucl-th/9711018.