Quantum Private Comparison: A Review

Abstract As an important branch of quantum secure multiparty computation, quantum private comparison (QPC) has attracted more and more attention recently. In this paper, according to the quantum implementation mechanism that these protocols used, we divide these protocols into three categories: The quantum cryptography QPC, the superdense coding QPC, and the entanglement swapping QPC. And then, a more in-depth analysis on the research progress, design idea, and substantive characteristics of corresponding QPC categories is carried out, respectively. Finally, the applications of QPC and quantum secure multi-party computation issues are discussed and, in addition, three possible research mainstream directions are pointed out.

[1]  Fei Gao,et al.  Efficient quantum private comparison employing single photons and collective detection , 2013, Quantum Inf. Process..

[2]  V. Buzek,et al.  Towards quantum-based privacy and voting , 2005, quant-ph/0505041.

[3]  Ying Sun,et al.  Information leak in Liu et al.’s quantum private comparison and a new protocol , 2012, The European Physical Journal D.

[4]  Christian Kurtsiefer,et al.  LETTER TO THE EDITOR: Secure communication with single-photon two-qubit states , 2001 .

[5]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[6]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[7]  Shafi Goldwasser,et al.  Multi party computations: past and present , 1997, PODC '97.

[8]  Michael Goldsmith,et al.  Modelling and analysis of security protocols , 2001 .

[9]  Mosayeb Naseri,et al.  Secure quantum sealed-bid auction , 2009 .

[10]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[11]  Yuan Feng,et al.  A Flowchart Language for Quantum Programming , 2011, IEEE Transactions on Software Engineering.

[12]  Wen Liu,et al.  A Protocol for the Quantum Private Comparison of Equality with χ-Type State , 2012 .

[13]  V. Buzek,et al.  Toward protocols for quantum-ensured privacy and secure voting , 2011, 1108.5090.

[14]  Hoi-Kwong Lo,et al.  Insecurity of Quantum Secure Computations , 1996, ArXiv.

[15]  E. W. Piotrowski,et al.  Quantum English auctions , 2001 .

[16]  Wen Liu,et al.  An efficient protocol for the quantum private comparison of equality with W state , 2011 .

[17]  Yixian Yang,et al.  An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement , 2010 .

[18]  Tzonelih Hwang,et al.  Intercept–resend attacks on Chen et al.'s quantum private comparison protocol and the improvements , 2011 .

[19]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[20]  Christian Kurtsiefer,et al.  Experimental demonstration of a quantum protocol for byzantine agreement and liar detection. , 2007, Physical review letters.

[21]  Qiaoyan Wen,et al.  Quantum Private Comparison Using Genuine Four-Particle Entangled States , 2012 .

[22]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[23]  Qiaoyan Wen,et al.  An Efficient Protocol for the Secure Multi-party Quantum Summation , 2010 .

[24]  Chia-Wei Tsai,et al.  Multi-user private comparison protocol using GHZ class states , 2013, Quantum Inf. Process..

[25]  Jacques Traoré,et al.  A fair and efficient solution to the socialist millionaires' problem , 2001, Discret. Appl. Math..

[26]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[27]  Ying Sun,et al.  Quantum private comparison protocol with d-dimensional Bell states , 2012, Quantum Information Processing.

[28]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[29]  Tzonelih Hwang,et al.  New quantum private comparison protocol using EPR pairs , 2011, Quantum Information Processing.

[30]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[31]  Rui Xu,et al.  Cryptanalysis and melioration of secure quantum sealed-bid auction with post-confirmation , 2012, Quantum Inf. Process..

[32]  Wei-Wei Zhang,et al.  A quantum protocol for millionaire problem with Bell states , 2013, Quantum Inf. Process..

[33]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[34]  Qiao-Yan Wen,et al.  Secure quantum private comparison , 2009 .

[35]  Wen Liu,et al.  Quantum Private Comparison Based on GHZ Entangled States , 2012 .

[36]  Hoi-Kwong Lo,et al.  A simple proof of the unconditional security of quantum key distribution , 1999, ArXiv.

[37]  A. DasGupta,et al.  Quantum Mechanical Effects in Bulk MOSFETs from a Compact Modeling Perspective: A Review , 2012 .

[38]  Wen Liu,et al.  New Quantum Private Comparison Protocol Using χ-Type State , 2012 .

[39]  刘文,et al.  Quantum Private Comparison Protocol Based on Bell Entangled States , 2012 .

[40]  Chen Hanwu,et al.  An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication , 2009 .

[41]  Qiaoyan Wen,et al.  An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement , 2009 .

[42]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[43]  Mingsheng Ying,et al.  Floyd--hoare logic for quantum programs , 2011, TOPL.

[44]  Hua Zhang,et al.  Comment on quantum private comparison protocols with a semi-honest third party , 2012, Quantum Information Processing.

[45]  Qiao-Yan Wen,et al.  Comment on "experimental demonstration of a quantum protocol for Byzantine agreement and liar detection". , 2008, Physical review letters.