Primary decomposition of zero-dimensional ideals over finite fields

Gao, Shuhong Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA. Wan, Daqing Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA. Wang, Mingsheng Acad Sinica, Inst Software, Informat Secur Lab, Beijing 100080, Peoples R China.

[1]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[2]  Wenjun Wu,et al.  Mechanical Theorem Proving in Geometries , 1994, Texts and Monographs in Symbolic Computation.

[3]  Dongming Wang Decomposing Algebraic Varieties , 1998, Automated Deduction in Geometry.

[4]  A. Seidenberg,et al.  On the Lasker-Noether Decomposition Theorem , 1984 .

[5]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[6]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[7]  M. V. Hoeij Factoring Polynomials and the Knapsack Problem , 2002 .

[8]  E. Berlekamp Factoring polynomials over large finite fields* , 1971, SYMSAC '71.

[9]  Wen-tsün Wu Numerical and Symbolic Scientific Computing , 1994, Texts & Monographs in Symbolic Computation.

[10]  Allan K. Steel,et al.  Conquering inseparability: Primary decomposition and multivariate factorization over algebraic function fields of positive characteristic , 2005, J. Symb. Comput..

[11]  Daqing Wan,et al.  Computing Zeta Functions Over Finite Fields , 1998 .

[12]  D. Eisenbud,et al.  Direct methods for primary decomposition , 1992 .

[13]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[14]  Lajos Rónyai,et al.  Factoring polynomials over finite fields , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[15]  Chris Monico,et al.  Computing the Primary Decomposition of Zero-dimensional Ideals , 2002, J. Symb. Comput..

[16]  Grégoire Lecerf,et al.  Sharp precision in Hensel lifting for bivariate polynomial factorization , 2006, Math. Comput..

[17]  Wenjun Wu,et al.  Basic principles of mechanical theorem proving in elementary geometries , 1986, Journal of Automated Reasoning.

[18]  Shuhong Gao,et al.  Factoring multivariate polynomials via partial differential equations , 2003, Math. Comput..

[19]  Hans-Gert Gräbe,et al.  Minimal Primary Decomposition and Factorized Gröbner Bases , 1997, Applicable Algebra in Engineering, Communication and Computing.

[20]  Shuhong Gao,et al.  OBNER BASIS STRUCTURE OF FINITE SETS OF POINTS , 2003 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  H. Niederreiter Factoring polynomials over finite fields using differential equations and normal bases , 1994 .

[23]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[24]  Alain Sausse A New Approach to Primary Decomposition , 2001, J. Symb. Comput..

[25]  Wolmer V. Vasconcelos,et al.  Computational methods in commutative algebra and algebraic geometry , 1997, Algorithms and computation in mathematics.

[26]  Harald Niederreiter,et al.  A new efficient factorization algorithm for polynomials over small finite fields , 1993, Applicable Algebra in Engineering, Communication and Computing.

[27]  Gerhard Pfister,et al.  Primary Decomposition: Algorithms and Comparisons , 1997, Algorithmic Algebra and Number Theory.

[28]  Kazuhiro Yokoyama,et al.  Localization and Primary Decomposition of Polynomial Ideals , 1996, J. Symb. Comput..

[29]  Lorenzo Robbiano,et al.  Computational aspects of commutative algebra , 1989 .

[30]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .