Spectral Numerical Exterior Calculus Methods for Differential Equations on Radial Manifolds

We develop exterior calculus approaches for partial differential equations on radial manifolds. We introduce numerical methods that approximate with spectral accuracy the exterior derivative $$\mathbf {d}$$d, Hodge star $$\star $$⋆, and their compositions. To achieve discretizations with high precision and symmetry, we develop hyperinterpolation methods based on spherical harmonics and Lebedev quadrature. We perform convergence studies of our numerical exterior derivative operator $$\overline{\mathbf {d}}$$d¯ and Hodge star operator $$\overline{\star }$$⋆¯ showing each converge spectrally to $$\mathbf {d}$$d and $$\star $$⋆. We show how the numerical operators can be naturally composed to formulate general numerical approximations for solving differential equations on manifolds. We present results for the Laplace–Beltrami equations demonstrating our approach.

[1]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[2]  V. I. Lebedev,et al.  Quadratures on a sphere , 1976 .

[3]  Ian H. Sloan,et al.  Polynomial interpolation and hyperinterpolation over general regions , 1995 .

[4]  P. Atzberger,et al.  Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes. , 2016, Soft matter.

[5]  Anil N. Hirani,et al.  Comparison of discrete Hodge star operators for surfaces , 2016, Comput. Aided Des..

[6]  Marino Arroyo,et al.  Relaxation dynamics of fluid membranes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Andrew Gillette,et al.  Finite Element Exterior Calculus for Evolution Problems , 2012, 1202.1573.

[8]  Nathanaël Schaeffer,et al.  Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations , 2012, ArXiv.

[9]  Anil N. Hirani,et al.  Discrete exterior calculus for variational problems in computer vision and graphics , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[10]  Ke Wang,et al.  Edge subdivision schemes and the construction of smooth vector fields , 2006, ACM Trans. Graph..

[11]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[12]  Ian H. Sloan,et al.  How good can polynomial interpolation on the sphere be? , 2001, Adv. Comput. Math..

[13]  M. Spivak Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus , 2019 .

[14]  K. Atkinson,et al.  Spherical Harmonics and Approximations on the Unit Sphere: An Introduction , 2012 .

[15]  Dinh Van Huynh,et al.  Algebra and Its Applications , 2006 .

[16]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[17]  Mathieu Desbrun,et al.  The chain collocation method: A spectrally accurate calculus of forms , 2014, J. Comput. Phys..

[18]  Xiaojun Chen,et al.  Regularized Least Squares Approximations on the Sphere Using Spherical Designs , 2012, SIAM J. Numer. Anal..

[19]  J Eells,et al.  GEOMETRIC ASPECTS OF CURRENTS AND DISTRIBUTIONS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[20]  C. Beentjes,et al.  QUADRATURE ON A SPHERICAL SURFACE , 2016 .

[21]  Robert S. Womersley,et al.  Efficient Spherical Designs with Good Geometric Properties , 2017, 1709.01624.

[22]  Mathieu Desbrun,et al.  On the geometric character of stress in continuum mechanics , 2007 .

[23]  Manfred Reimer,et al.  Hyperinterpolation on the Sphere at the Minimal Projection Order , 2000 .

[24]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[25]  Mark Meyer,et al.  Subdivision exterior calculus for geometry processing , 2016, ACM Trans. Graph..

[26]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[27]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[28]  Sean S. B. Moore,et al.  FFTs for the 2-Sphere-Improvements and Variations , 1996 .

[29]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[30]  H. Whitney Geometric Integration Theory , 1957 .

[31]  Anil N. Hirani,et al.  Delaunay Hodge star , 2012, Comput. Aided Des..

[32]  V. Lebedev,et al.  A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .

[33]  Fredrik Kjolstad,et al.  Why New Programming Languages for Simulation? , 2016, ACM Trans. Graph..

[34]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[35]  Amit Kumar,et al.  SymPy: Symbolic computing in Python , 2016, PeerJ Prepr..

[36]  Keenan Crane,et al.  Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.

[37]  Jerrold E. Marsden,et al.  Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms , 2007, 0707.4470.

[38]  Ian H. Sloan,et al.  Constructive Polynomial Approximation on the Sphere , 2000 .

[39]  A. Pressley Elementary Differential Geometry , 2000 .

[40]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.