Intrinsically Low Thermal Conductivity in BiSbSe3: A Promising Thermoelectric Material with Multiple Conduction Bands

Bi2Se3, as a Te‐free alternative of room‐temperature state‐of‐the‐art thermoelectric (TE) Bi2Te3, has attracted little attention due to its poor electrical transport properties and high thermal conductivity. Interestingly, BiSbSe3, a product of alloying 50% Sb on Bi sites, shows outstanding electron and phonon transports. BiSbSe3 possesses orthorhombic structure and exhibits multiple conduction bands, which can be activated when the carrier density is increased as high as ≈3.7 × 1020 cm−3 through heavily Br doping, resulting in simultaneously enhancing the electrical conductivities and Seebeck coefficients. Meanwhile, an extremely low thermal conductivity (≈0.6–0.4 W m−1 K−1 at 300–800 K) is found in BiSbSe3. Both first‐principles calculations and elastic properties measurements show the strong anharmonicity and support the ultra‐low thermal conductivity of BiSbSe3. Finally, a maximum dimensionless figure of merit ZT ∼ 1.4 at 800 K is achieved in BiSb(Se0.94Br0.06)3, which is comparable to the most n‐type Te‐free TE materials. The present results indicate that BiSbSe3 is a new and a robust candidate for TE power generation in medium‐temperature range.

[1]  D. Parker,et al.  Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4 , 2018, Science.

[2]  Yue Chen,et al.  3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals , 2018, Science.

[3]  Li-dong Zhao,et al.  High performance of n-type (PbS)1-x-y(PbSe)x(PbTe)y thermoelectric materials , 2018 .

[4]  Li-dong Zhao,et al.  Anharmoncity and low thermal conductivity in thermoelectrics , 2018 .

[5]  Matthew S. Dargusch,et al.  High Performance Thermoelectric Materials: Progress and Their Applications , 2018 .

[6]  Yongsheng Zhang,et al.  Dual effects of lone-pair electrons and rattling atoms in CuBiS 2 on its ultralow thermal conductivity , 2017 .

[7]  Li-dong Zhao,et al.  Enhancing thermoelectric performance of n-type PbSe via additional meso-scale phonon scattering , 2017 .

[8]  Haijun Wu,et al.  Strategy to optimize the overall thermoelectric properties of SnTe via compositing with its property-counter CuInTe2 , 2017 .

[9]  Cheng Chang,et al.  Multiple Converged Conduction Bands in K2Bi8Se13: A Promising Thermoelectric Material with Extremely Low Thermal Conductivity. , 2016, Journal of the American Chemical Society.

[10]  Jihui Yang,et al.  High thermoelectric performance in Te-free (Bi,Sb)2Se3via structural transition induced band convergence and chemical bond softening , 2016 .

[11]  Jingfeng Li,et al.  Raising thermoelectric performance of n-type SnSe via Br doping and Pb alloying , 2016 .

[12]  Di Wu,et al.  Origin of low thermal conductivity in SnSe , 2016 .

[13]  Tiejun Zhu,et al.  Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization , 2016 .

[14]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[15]  Geoffroy Hautier,et al.  Thinking Like a Chemist: Intuition in Thermoelectric Materials. , 2016, Angewandte Chemie.

[16]  David J. Singh,et al.  On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective , 2016 .

[17]  G. Ji,et al.  First-principles study of structural, elastic, electronic and thermodynamic properties of topological insulator Bi2Se3 under pressure , 2016 .

[18]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[19]  Dipanshu Bansal,et al.  Orbitally driven giant phonon anharmonicity in SnSe , 2015, Nature Physics.

[20]  Tiejun Zhu,et al.  Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n‐Type Bismuth‐Telluride‐Based Solid Solutions , 2015 .

[21]  Di Wu,et al.  Advanced electron microscopy for thermoelectric materials , 2015 .

[22]  Ce-Wen Nan,et al.  BiCuSeO oxyselenides: new promising thermoelectric materials , 2014 .

[23]  M. Kanatzidis,et al.  Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. , 2014, Journal of the American Chemical Society.

[24]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[25]  Heng Wang,et al.  Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit , 2014 .

[26]  M. Kanatzidis,et al.  All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance , 2013 .

[27]  Y. Amouyal On the role of lanthanum substitution defects in reducing lattice thermal conductivity of the AgSbTe2 (P4/mmm) thermoelectric compound for energy conversion applications , 2013 .

[28]  Gang Chen,et al.  Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion , 2013 .

[29]  V. Ozoliņš,et al.  Lone pair electrons minimize lattice thermal conductivity , 2013 .

[30]  W. Pan,et al.  High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO , 2013 .

[31]  Lei Yang,et al.  Nanostructured thermoelectric materials: current research and future challenge , 2012 .

[32]  Han Li,et al.  Enhanced thermoelectric properties of Bi2(Te1−xSex)3-based compounds as n-type legs for low-temperature power generation , 2012 .

[33]  G. J. Snyder,et al.  Dopants effect on the band structure of PbTe thermoelectric material , 2012 .

[34]  Vinayak P. Dravid,et al.  Strong Phonon Scattering by Layer Structured PbSnS2 in PbTe Based Thermoelectric Materials , 2012, Advanced materials.

[35]  M. Kanatzidis,et al.  PbTe-PbSnS 2 thermoelectric composites: Low lattice thermal conductivity from large microstructures , 2012 .

[36]  M. Kanatzidis,et al.  Tellurium‐Free Thermoelectric: The Anisotropic n‐Type Semiconductor Bi2S3 , 2012 .

[37]  W. S. Liu,et al.  Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. , 2010, Nano letters.

[38]  X. Dai,et al.  First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3 , 2010, 1003.5082.

[39]  J. Heremans,et al.  Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power , 2009 .

[40]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[41]  D. Morelli,et al.  Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.

[42]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[43]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[44]  Han Li,et al.  Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure , 2007 .

[45]  M. Fang,et al.  Effect of point defects on the thermal transport properties of (LaxGd1- x)2Zr2O7 : Experiment and theoretical model , 2006 .

[46]  S. Yamanaka,et al.  Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity , 2005 .

[47]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[48]  Vinayak P. Dravid,et al.  The panoscopic approach to high performance thermoelectrics , 2014 .