Quantifying dynamic sensitivity of optimization algorithm parameters to improve hydrological model calibration

Summary It is widely recognized that optimization algorithm parameters have significant impacts on algorithm performance, but quantifying the influence is very complex and difficult due to high computational demands and dynamic nature of search parameters. The overall aim of this paper is to develop a global sensitivity analysis based framework to dynamically quantify the individual and interactive influence of algorithm parameters on algorithm performance. A variance decomposition sensitivity analysis method, Analysis of Variance (ANOVA), is used for sensitivity quantification, because it is capable of handling small samples and more computationally efficient compared with other approaches. The Shuffled Complex Evolution method developed at the University of Arizona algorithm (SCE-UA) is selected as an optimization algorithm for investigation, and two criteria, i.e., convergence speed and success rate, are used to measure the performance of SCE-UA. Results show the proposed framework can effectively reveal the dynamic sensitivity of algorithm parameters in the search processes, including individual influences of parameters and their interactive impacts. Interactions between algorithm parameters have significant impacts on SCE-UA performance, which has not been reported in previous research. The proposed framework provides a means to understand the dynamics of algorithm parameter influence, and highlights the significance of considering interactive parameter influence to improve algorithm performance in the search processes.

[1]  George Kuczera,et al.  Probabilistic optimization for conceptual rainfall-runoff models: A comparison of the shuffled complex evolution and simulated annealing algorithms , 1999 .

[2]  Rolf Weingartner,et al.  Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments , 2014 .

[3]  Mark Hoogendoorn,et al.  Parameter Control in Evolutionary Algorithms: Trends and Challenges , 2015, IEEE Transactions on Evolutionary Computation.

[4]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[5]  Chao Zhang,et al.  Calibration of Conceptual Rainfall-Runoff Models Using Global Optimization , 2015 .

[6]  Soroosh Sorooshian,et al.  Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .

[7]  Rajeev Kumar,et al.  Adaptive Parameter Control of Evolutionary Algorithms Under Time Constraints , 2006 .

[8]  Keith Beven,et al.  Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL , 1997 .

[9]  Aaron C. Zecchin,et al.  Hybrid discrete dynamically dimensioned search (HD‐DDS) algorithm for water distribution system design optimization , 2009 .

[10]  Bogdan M. Wilamowski,et al.  A Hybrid Constructive Algorithm for Single-Layer Feedforward Networks Learning , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[11]  Soroosh Sorooshian,et al.  Comment on "Dynamically dimensioned search algorithm for computationally efficient watershed model calibration" by Bryan A. Tolson and Christine A. Shoemaker , 2008 .

[12]  K. Beven,et al.  Upscaling discrete internal observations for obtaining catchment-averaged TOPMODEL parameters in a small Mediterranean mountain basin , 2008 .

[13]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[14]  William Castaings,et al.  Characterization of process-oriented hydrologic model behavior with temporal sensitivity analysis for flash floods in Mediterranean catchments , 2013 .

[15]  B. Schädler,et al.  The importance of glacier and forest change in hydrological climate-impact studies , 2012 .

[16]  Véronique Ducrocq,et al.  Coupling the ISBA Land Surface Model and the TOPMODEL Hydrological Model for Mediterranean Flash-Flood Forecasting: Description, Calibration, and Validation , 2010 .

[17]  S. K. Jain Calibration of conceptual models for rainfall-runoff simulation , 1993 .

[18]  N. Fohrer,et al.  Temporal parameter sensitivity guided verification of process dynamics , 2015 .

[19]  Guangtao Fu,et al.  Global Land Data Assimilation System data assessment using a distributed biosphere hydrological model , 2015 .

[20]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[21]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[22]  Kuniyoshi Takeuchi,et al.  Regionalisation of hydrological model parameters under parameter uncertainty : A case study involving TOPMODEL and basins across the globe , 2008 .

[23]  Soroosh Sorooshian,et al.  Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .

[24]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[25]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[26]  Raghavan Srinivasan,et al.  Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model , 2009 .

[27]  Bryan A. Tolson,et al.  Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization , 2013 .

[28]  Patrick M. Reed,et al.  Diagnostic Assessment of Search Controls and Failure Modes in Many-Objective Evolutionary Optimization , 2012, Evolutionary Computation.

[29]  Bryan A. Tolson,et al.  Dynamically dimensioned search algorithm for computationally efficient watershed model calibration , 2007 .

[30]  W. Price Global optimization algorithms for a CAD workstation , 1987 .

[31]  Sanyang Liu,et al.  A Cluster-Based Differential Evolution With Self-Adaptive Strategy for Multimodal Optimization , 2014, IEEE Transactions on Cybernetics.

[32]  Patrick M. Reed,et al.  Time‐varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior , 2013 .

[33]  Pascal Côté,et al.  Comparison of Stochastic Optimization Algorithms in Hydrological Model Calibration , 2014 .

[34]  Faisal Hossain,et al.  Assessment of a stochastic interpolation based parameter sampling scheme for efficient uncertainty analyses of hydrologic models , 2005, Comput. Geosci..

[35]  Yu Chi Wang,et al.  Comparison of genetic algorithms and shuffled complex evolution approach for calibrating distributed rainfall–runoff model , 2010 .

[36]  W. Wenzel,et al.  Comparison of stochastic optimization methods for receptor-ligand docking , 2002 .

[37]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[38]  S. Kotlarski,et al.  Quantifying uncertainty sources in an ensemble of hydrological climate‐impact projections , 2013 .

[40]  William F. Punch,et al.  Fast and Efficient Black Box Optimization Using the Parameter-less Population Pyramid , 2015, Evolutionary Computation.

[41]  Patrick M. Reed,et al.  Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design , 2005 .

[42]  Kusum Deep,et al.  A new crossover operator for real coded genetic algorithms , 2007, Appl. Math. Comput..

[43]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[44]  P. P. Chakrabarti,et al.  Adaptive parameter control of evolutionary algorithms to improve quality-time trade-off , 2009, Appl. Soft Comput..

[45]  Zoran Kapelan,et al.  Reducing the Complexity of Multiobjective Water Distribution System Optimization through Global Sensitivity Analysis , 2012 .

[46]  Christine A. Shoemaker,et al.  Reply to comment on “Dynamically dimensioned search algorithm for computationally efficient watershed model calibration” by Ali Behrangi et al. , 2008 .

[47]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[48]  P. Reed,et al.  Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models , 2009 .

[49]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[50]  A. E. Eiben,et al.  Parameter tuning for configuring and analyzing evolutionary algorithms , 2011, Swarm Evol. Comput..

[51]  Rolf Isermann,et al.  Parameter adaptive control algorithms - A tutorial , 1982, Autom..

[52]  Kay Chen Tan,et al.  Memetic informed evolutionary optimization via data mining , 2011, Memetic Comput..

[53]  Patrick M. Reed,et al.  How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration , 2005 .

[54]  Erwin Zehe,et al.  Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity , 2011 .

[55]  Erwin Zehe,et al.  Temporal dynamics of model parameter sensitivity for computationally expensive models with the Fourier amplitude sensitivity test , 2011 .

[56]  Keith Beven,et al.  Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty) , 1999 .

[57]  Meie Shen,et al.  Differential Evolution With Two-Level Parameter Adaptation , 2014, IEEE Transactions on Cybernetics.

[58]  Peter J. Fleming,et al.  An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms , 2015, Int. J. Syst. Sci..

[59]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[60]  D. Hannah,et al.  Future hydrological extremes: The uncertainty from multiple global climate and global hydrological models , 2015 .

[61]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .