Renderingolygonal PSceneswithDi ractiont AccounLilian eneau, Av eriaux hel Mic MCOM IR SIC, UMR 6615 CNRSep ardort Boulev 3 2 el - - TBP 17986960 uturoscop e F Cedex, rance Feneau@sic.sp2mi.univ-p v oitiers.fr aCT ABSTRAGlobal pro cessing of di raction phenomena y b a half-plane as w prop osed y b eneau Av eriaux, and using Mthe Geometrical Theory of Di raction.In this , theory di raction ys ra are emitted y b di raction pts oinb elonging to thehalf-plane edge(ordihedron edge).Thesolution en giv for nding thesepts oinb eingumerical, nitisdiculttot implemen andleadsw loprecisionsolutionswithaw sloalgorithm.Inthis pap ere w rstprop osea new geometric solution for nding thedihedron di raction pts, oinh whicleads to an t ecienanalytic algorithm.Next e w t presenan tation implemen of a racing y-T Ra are w softfor p olygonal sceneswith an automatic di raction t. treatmenSince this implies di raction y b dihedra,e w t presen the dihedron data structure and the corresp onding algorithm h whic es solv o w t problems :theexistence of di raction paths, and the impy ossibilit for dihedra to share their edge.These ts elemen leadto an tation implemen of a racing y-T Ra are w soft with rst di raction t accoun for y an p olygonal scenes.ords: KeywRendering hniques, ec T Di raction, GTD, racing. y-T Ra1ODUCTION INTRThe quest for realism has ys a alw b een a ma jor preo c-cupation among the image rendering . y unit comm o Te hiev acthisgoal,hers researce v haaddedysically phbased e ects, from reection on p erfect mirrors withy-tracing ra to glare e ects [Sp enc95].Allable observopticphenomenaaredescrib edy bone or more ysical ph . theoryus Th realism in imagerendering can b e ed hiev ac y b including these theoriesin computational mo dels, if p ossible.Inthisy a wultiple mreectionsondi usesur-facescanb ecomparedtothermalhanges excandleadstoy radiositcomputation]. [Goral84olariza- Ption], ol 90 [Wbirefringence] anne94 [Tandterfer- inences ] [Calle94 ] [Dias94 can b e added to a y-tracer rasincethe phenomena can b emo delled y b Geometri-calTheoryofOptics.Causticscanb eundersto o de likt Ferma'sprinciplee ects] h92 [Mitcandleadsto umerical n computations or te-Carlo Mon metho ds[Jense97 ].tomic Ascatteringcanb een takto inac-t counwithphasefunctionsandgeometricaloptics,and is used in te-Carlo Mon based pro cesses] [Blasi94erez97 [P].e Lik inglobal tion, illumina lo calrenderingmeth-o ds ely tensiv in use the conceptof , y ra i.e.geometri-cal optic , theory for instance theCook-Torrance'smo del [Co]. ok81 ulation Sim of the subsurface scatter-ing leads to skin or leaf reections ]. [Hanra93 Di rac-tion y b a subsurface structure leads to a mo del basedonchhoff Kir's w la [He91].e, Ey elash, ey and w ebro ey di raction ere w also de-scrib ed using a y-tracer ra metho d and a ltering pro-cess]. am90 [NakThismetho dhasb eented augmen
[1]
Michael J. Wozny,et al.
Polarization and birefringency considerations in rendering
,
1994,
SIGGRAPH.
[2]
Christophe Schlick,et al.
An Importance Driven Monte-Carlo Solution to the Global Illumination Problem
,
1995
.
[3]
François X. Sillion,et al.
Global Illumination Techniques for the Simulation of Participating Media
,
1997,
Rendering Techniques.
[4]
Turner Whitted,et al.
An improved illumination model for shaded display
,
1979,
CACM.
[5]
Lawrence B. Wolff,et al.
Ray tracing with polarization parameters
,
1990,
IEEE Computer Graphics and Applications.
[6]
Henrik Wann Jensen,et al.
Rendering Caustics on Non‐Lambertian Surfaces
,
1996,
Comput. Graph. Forum.
[7]
Donald P. Greenberg,et al.
Physically-based glare effects for digital images
,
1995,
SIGGRAPH.
[8]
E. H. Linfoot.
Principles of Optics
,
1961
.
[9]
Donald P. Greenberg,et al.
A comprehensive physical model for light reflection
,
1991,
SIGGRAPH.
[10]
Maria Lurdes Dias.
Ray tracing interference color
,
1991,
IEEE Computer Graphics and Applications.
[11]
Eric Andres,et al.
The Discrete Tube: A Spatial Acceleration Technique for Efficient Diffraction Computation
,
1999,
DGCI.
[12]
R. Kouyoumjian,et al.
A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface
,
1974
.
[13]
Takashi Okamoto,et al.
A lighting model aiming at drive simulators
,
1990,
SIGGRAPH.
[14]
Pat Hanrahan,et al.
Reflection from layered surfaces due to subsurface scattering
,
1993,
SIGGRAPH.