ARM processes and modeling methodology

ARM (Auto-Regressive Modular) processes constitute a broad class of nonlinear autoregressive schemes with modulo-1 reduction and additional transformations. Unlike their TES (Transform-Expand-Sample) precursors, which only admit iid innovation sequences, ARM processes admit dependent innovation sequences as well, so long as they are independent of the initial ARM variate. As such, the class of ARM processes constitutes a considerable generalization of the TES class, endowed with enhanced modeling flexibility. For example, a Markovian innovation sequence can model burstiness in traffic processes far better by making use of the Markovian state to capture the structure of bursts. This paper introduces ARM processes and derives their fundamental properties in terms of marginal distributions and autocorrelation functions. It defines several useful subclasses that illustrate the modeling flexibility of ARM classes. Finally, it outlines a modeling methodology of empirical time series that can simultaneously fit ...

[1]  Michael Devetsikiotis,et al.  Dynamic rate control of VBR MPEG video transmission over ATM networks , 1996, Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference.

[2]  G. Tolstov Fourier Series , 1962 .

[3]  Peter A. W. Lewis,et al.  Minification processes and their transformations , 1991, Journal of Applied Probability.

[4]  Bede Liu,et al.  Generation of a random sequence having a jointly specified marginal distribution and autocovariance , 1982 .

[5]  B. Melamed,et al.  Algorithmic modeling of TES processes , 1995, IEEE Trans. Autom. Control..

[6]  Benjamin Melamed,et al.  Bidirectional estimation and confidence regions for TES processes , 1995, MASCOTS '95. Proceedings of the Third International Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems.

[7]  Benjamin Melamed,et al.  A Survey of TES Modeling Applications , 1995, Simul..

[8]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[9]  S. Lang,et al.  An Introduction to Fourier Analysis and Generalised Functions , 1959 .

[10]  G. Klaoudatos,et al.  Automated modeling of broadband network data using the QTES methodology , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[11]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[12]  Dipankar Raychaudhuri,et al.  TES-based video source modeling for performance evaluation of integrated networks , 1994, IEEE Trans. Commun..

[13]  Duan-Shin Lee,et al.  TES Modeling for Analysis of a Video Multiplexer , 1992, Perform. Evaluation.

[14]  Michael Devetsikiotis,et al.  Modeling and control of VBR H.261 video transmission over frame relay networks , 1997, IEEE Trans. Circuits Syst. Video Technol..

[15]  Dipankar Raychaudhuri,et al.  Variable Bit Rate Mpeg Video: Characteristics, Modeling and Multiplexing , 1994 .

[16]  Benjamin Melamed,et al.  Modeling full-length VBR video using Markov-renewal-modulated TES models , 1998, IEEE J. Sel. Areas Commun..

[17]  Paul Bratley,et al.  A guide to simulation , 1983 .

[18]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[19]  Benjamin Melamed,et al.  The empirical TES methodology: modeling empirical time series , 1997 .

[20]  Benjamin Melamed,et al.  TES: A Class of Methods for Generating Autocorrelated Uniform Variates , 1991, INFORMS J. Comput..

[21]  B. Melamed,et al.  The transition and autocorrelation structure of tes processes: Part II: Special Cases , 1992 .

[22]  Benjamin Melamed,et al.  The run probabilities of TES processes , 1994 .

[23]  Benjamin Melamed,et al.  An Overview of Tes Processes and Modeling Methodology , 1993, Performance/SIGMETRICS Tutorials.

[24]  Benjamin Melamed,et al.  The spectral structure of TES processes , 1994 .

[25]  Benjamin Melamed,et al.  The QTES/PH/1 Queue , 1996, Perform. Evaluation.

[26]  G. E. Johnson Constructions of particular random processes , 1994, Proc. IEEE.

[27]  Barry L. Nelson,et al.  Autoregressive to anything: Time-series input processes for simulation , 1996, Oper. Res. Lett..

[28]  Michael Devetsikiotis,et al.  SIMULATION AND MODELLING OF VARIABLE BIT RATE MPEG VIDEO TRANSMISSION OVER ATM NETWORKS , 1996 .

[29]  Benjamin Melamed,et al.  TEStool: A Visual Interactive Environment for Modeling Autocorrelated Time Series , 1995, Perform. Evaluation.

[30]  B. Melamed,et al.  The transition and autocorrelation structure of tes processes , 1992 .