A low-power, high-performance, 1024-point FFT processor

This paper presents an energy-efficient, single-chip, 1024-point fast Fourier transform (FFT) processor. The 460000-transistor design has been fabricated in a standard 0.7 /spl mu/m (L/sub poly/=0.6 /spl mu/m) CMOS process and is fully functional on first-pass silicon. At a supply voltage of 1.1 V, it calculates a 1024-point complex FFT in 330 /spl mu/s while consuming 9.5 mW, resulting in an adjusted energy efficiency more than 16 times greater than the previously most efficient known FFT processor. At 3.3 V, it operates at 173 MHz-which is a clock rate 2.6 times greater than the previously fastest rate.

[1]  P. A. Ruetz,et al.  A real time FFT chip set: architectural issues , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[2]  C. Joanblanq,et al.  A fast single-chip implementation of 8192 complex point FFT , 1995 .

[3]  B.M. Baas An energy-efficient single-chip FFT processor , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[4]  Surendar S. Magar,et al.  An application specific DSP chip set for 100 MHz data rates , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[5]  Bevan M. Baas,et al.  An approach to low-power, high-performance, Fast Fourier Transform processor design , 1999 .

[6]  Alan V. Oppenheim,et al.  Discrete-time Signal Processing. Vol.2 , 2001 .

[7]  R. Singleton,et al.  A method for computing the fast Fourier transform with auxiliary memory and limited high-speed storage , 1967, IEEE Transactions on Audio and Electroacoustics.

[8]  M. Horowitz,et al.  Low-power digital design , 1994, Proceedings of 1994 IEEE Symposium on Low Power Electronics.

[9]  J. O'Brien,et al.  A 200 MIPS single-chip 1 k FFT processor , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[10]  W. M. Gentleman,et al.  Fast Fourier Transforms: for fun and profit , 1966, AFIPS '66 (Fall).

[11]  G. Troster,et al.  A high precision 1024-point FFT processor for 2D convolution , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[12]  Bevan M. Baas,et al.  Stanford's ultra-low-power CMOS technology and applications , 1996 .

[13]  J. Shott,et al.  A 200 mV self-testing encoder/decoder using Stanford ultra-low-power CMOS , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[14]  Neil Weste,et al.  Principles of CMOS VLSI Design , 1985 .

[15]  David A. Patterson,et al.  Computer Architecture: A Quantitative Approach , 1969 .

[16]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  N. Brenner Fast Fourier transform of externally stored data , 1969 .

[18]  Shousheng He,et al.  Design and implementation of a 1024-point pipeline FFT processor , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[19]  David A. Patterson,et al.  Computer Architecture - A Quantitative Approach, 5th Edition , 1996 .

[20]  Anantha P. Chandrakasan,et al.  Low-power CMOS digital design , 1992 .

[21]  David H. Bailey,et al.  FFTs in external or hierarchical memory , 1989, Proceedings of the 1989 ACM/IEEE Conference on Supercomputing (Supercomputing '89).

[22]  J. Burr,et al.  Ultra low power CMOS technology , 1991 .

[23]  Tom Chen,et al.  COBRA: an 1.2 million transistor expandable column FFT chip , 1994, Proceedings 1994 IEEE International Conference on Computer Design: VLSI in Computers and Processors.