A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6

We present the results from a survey of i-dropout objects selected from ∼1550 deg2 of multicolor imaging data from the Sloan Digital Sky Survey to search for luminous quasars at z ≳ 5.8. Objects with i*-z* > 2.2 and z* < 20.2 are selected, and follow-up J-band photometry is used to separate L- and T-type cool dwarfs from high-redshift quasars. We describe the discovery of three new quasars, SDSSp J083643.85+005453.3 (z = 5.82), J130608.26+035626.3 (z = 5.99), and J103027.10+052455.0 (z = 6.28). The quasar SDSSp J083643.85+005453.3 is a radio source with flux of 1.1 mJy at 20 cm. The spectra of all three quasars show strong and broad Lyα + N V emission lines and very strong Lyα forest absorption, with a mean continuum decrement DA > 0.90. The ARC 3.5 m spectrum of SDSSp J103027.10+052455.0 shows that over a range of ∼300 Å immediately blueward of the Lyα emission, the average transmitted flux is only 0.003 ± 0.020 times that of the continuum level, consistent with zero flux over a ∼300 Å range of the Lyα forest region and suggesting a tentative detection of the complete Gunn-Peterson trough. The existence of strong metal lines in the quasar spectra suggests early metal enrichment in the quasar environment. The three new objects, together with the previously published z = 5.8 quasar SDSSp J104433.04-012502.2, form a complete color-selected flux-limited sample at z ≳ 5.8. We estimate the selection function of this sample, taking into account the estimated variations in the quasar spectral energy distribution, as well as observational photometric errors. We find that at z = 6, the comoving density of luminous quasars at M1450 < -26.8 (H0 = 50 km s-1 Mpc-1, Ω = 1) is 1.1 × 10-9 Mpc-3. This is a factor of ∼2 lower than that at z ∼ 5 and is consistent with an extrapolation of the observed quasar evolution at z < 5. Using the current sample, we discuss the constraint on the shape of the quasar luminosity function and the implications for the contribution of quasars to the ionizing background at z ∼ 6. The luminous quasars discussed in the paper have central black hole masses of several times 109 M⊙ by the Eddington argument, with likely dark halo masses on the order of 1013 M⊙. Their observed space density provides a sensitive test of models of quasar and galaxy formation at high redshift.

[1]  J. Gunn,et al.  J-Band Spectroscopy of the z = 5.74 Broad Absorption Line Quasar SDSSp J104433.04–012502.2 , 2001 .

[2]  V. Narayanan,et al.  Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.

[3]  S. Djorgovski,et al.  On the Threshold of the Reionization Epoch , 2001, astro-ph/0108069.

[4]  F. Mannucci,et al.  Discovery of strong CIV absorption in the highest redshift quasar , 2001, astro-ph/0104147.

[5]  Xiaohui Fan,et al.  A 250 GHz Survey of High-Redshift Quasars from the Sloan Digital Sky Survey , 2001, astro-ph/0103252.

[6]  V. Narayanan,et al.  The Merger History of Supermassive Black Holes in Galaxies , 2001, astro-ph/0101196.

[7]  Z. Haiman,et al.  What Is the Highest Plausible Redshift of Luminous Quasars? , 2000, astro-ph/0011529.

[8]  D. Calzetti,et al.  NICMOS Imaging of the Host Galaxies of z ~ 2-3 Radio-quiet Quasars , 2000, astro-ph/0011330.

[9]  C. Steidel,et al.  Lyman-Continuum Emission from Galaxies at z ≃ 3.4 , 2000, astro-ph/0008283.

[10]  Chicago,et al.  Colors of 2625 Quasars at 0 < z < 5 Measured in the Sloan Digital Sky Survey Photometric System , 2000, astro-ph/0012449.

[11]  W. Brandt,et al.  An XMM-Newton Detection of the z = 5.80 X-Ray-Weak Quasar SDSSp J104433.04-012502.2 , 2000, astro-ph/0010328.

[12]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey — I. The optical luminosity function of quasi-stellar objects , 2000 .

[13]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[14]  Z. Haiman,et al.  Quasar Strömgren Spheres Before Cosmological Reionization , 2000, astro-ph/0006376.

[15]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[16]  M. Rees,et al.  The Earliest Luminous Sources and the Damping Wing of the Gunn-Peterson Trough , 2000, astro-ph/0006271.

[17]  et al,et al.  The Discovery of a Luminous z = 5.80 Quasar from the Sloan Digital Sky Survey , 2000, astro-ph/0005414.

[18]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey - I. The Optical QSO Luminosity Function , 2000 .

[19]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[20]  A. Szalay,et al.  Five High-Redshift Quasars Discovered in Commissioning Imaging Data of the Sloan Digital Sky Survey , 2000, astro-ph/0005247.

[21]  Uomoto,et al.  The Missing Link: Early Methane (“T”) Dwarfs in the Sloan Digital Sky Survey , 2000, The Astrophysical journal.

[22]  Uomoto,et al.  The Discovery of a Second Field Methane Brown Dwarf from Sloan Digital Sky Survey Commissioning Data , 2000, The Astrophysical journal.

[23]  M. A. Strauss,et al.  The Low‐Resolution Spectrograph of the Hobby‐Eberly Telescope. II. Observations of Quasar Candidates from the Sloan Digital Sky Survey , 1999, astro-ph/9910306.

[24]  N. Gnedin Cosmological Reionization by Stellar Sources , 1999, astro-ph/9909383.

[25]  A. Szalay,et al.  L Dwarfs Found in Sloan Digital Sky Survey Commissioning Imaging Data , 1999, astro-ph/9909263.

[26]  G. Kauffmann,et al.  A unified model for the evolution of galaxies and quasars , 1999, astro-ph/9906493.

[27]  Martin J. Rees,et al.  Reionization of the Inhomogeneous Universe , 1998, astro-ph/9812306.

[28]  R. Nichol,et al.  Optical and Infrared Colors of Stars Observed by the Two Micron All Sky Survey and the Sloan Digital Sky Survey , 2000 .

[29]  Doi,et al.  The Discovery of a High-Redshift Quasar without Emission Lines from Sloan Digital Sky Survey Commissioning Data , 1999, The Astrophysical journal.

[30]  David G. Monet,et al.  � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. DISCOVERY OF FOUR FIELD METHANE (T-TYPE) DWARFS WITH THE TWO MICRON ALL-SKY SURVEY 1 , 1999 .

[31]  et al,et al.  The Discovery of a Field Methane Dwarf from Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/9905391.

[32]  G. Ferland,et al.  Elemental Abundances in Quasistellar Objects: Star Formation and Galactic Nuclear Evolution at High Redshifts , 1999, astro-ph/9904223.

[33]  R. Nichol,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.

[34]  Robert Lupton,et al.  A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.

[35]  Xiaohui Fan,et al.  Simulation of Stellar Objects in SDSS Color Space , 1999, astro-ph/9902063.

[36]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[37]  Z. Haiman,et al.  Determining the Redshift of Reionization From the Spectra of High-Redshift Sources , 1998, astro-ph/9807070.

[38]  ApJ, in press , 1999 .

[39]  S. E. Persson,et al.  A New System of Faint Near-Infrared Standard Stars , 1998 .

[40]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[41]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[42]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[43]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[44]  Z. Haiman,et al.  Observational Signatures of the First Quasars , 1997, astro-ph/9710208.

[45]  N. Epchtein,et al.  The Deep Near Infrared Southern Sky Survey (denis): Progress Status and Scientific Achievements , 1997 .

[46]  I. Hook,et al.  The FIRST Radio-loud Broad Absorption Line QSO and Evidence for a Hidden Population of Quasars , 1997, astro-ph/9702012.

[47]  Paolo Persi,et al.  The Impact of Large Scale Near-IR Sky Surveys , 1997 .

[48]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[49]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[50]  James E. Gunn,et al.  Spectrscopic CCD Surveys for Quasars at Large Redshift.IV.Evolution of the Luminosity Function from Quasars Detected by Their Lyman-Alpha Emission , 1995 .

[51]  L. Krauss,et al.  The cosmological constant is back , 1995, astro-ph/9504003.

[52]  Paul J. Steinhardt,et al.  The observational case for a low-density Universe with a non-zero cosmological constant , 1995, Nature.

[53]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[54]  G. Ferland,et al.  The Chemical Evolution of QSOs and the Implications for Cosmology and Galaxy Formation , 1993 .

[55]  R. Blandford,et al.  Cosmological Applications of Gravitational Lensing , 1992 .

[56]  E. Turner Quasars and galaxy formation. I - The z greater than 4 objects , 1991 .

[57]  E. Turner Gravitational lensing limits on the cosmological constant in a flat universe , 1990 .

[58]  J. R. Bond,et al.  The Evolution and fate of Very Massive Objects , 1984 .

[59]  J. B. Oke,et al.  Absolute spectrophotometry of very large redshift quasars , 1982 .

[60]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .

[61]  P. Scheuer A Sensitive Test for the Presence of Atomic Hydrogen in Intergalactic Space , 1965, Nature.