Contributions of the PPC to Online Control of Visually Guided Reaching Movements Assessed with fMRI-Guided TMS

The posterior parietal cortex (PPC) plays an important role in controlling voluntary movements by continuously integrating sensory information about body state and the environment. We tested which subregions of the PPC contribute to the processing of target- and body-related visual information while reaching for an object, using a reaching paradigm with 2 types of visual perturbation: displacement of the visual target and displacement of the visual feedback about the hand position. Initially, functional magnetic resonance imaging (fMRI) was used to localize putative target areas involved in online corrections of movements in response to perturbations. The causal contribution of these areas to online correction was tested in subsequent neuronavigated transcranial magnetic stimulation (TMS) experiments. Robust TMS effects occurred at distinct anatomical sites along the anterior intraparietal sulcus (aIPS) and the anterior part of the supramarginal gyrus for both perturbations. TMS over neighboring sites did not affect online control. Our results support the hypothesis that the aIPS is more generally involved in visually guided control of movements, independent of body effectors and nature of the visual information. Furthermore, they suggest that the human network of PPC subregions controlling goal-directed visuomotor processes extends more inferiorly than previously thought. Our results also point toward a good spatial specificity of the TMS effects.

[1]  S. Dehaene,et al.  Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe , 2002, Neuron.

[2]  A Reichenbach,et al.  The cortical site of visual suppression by transcranial magnetic stimulation. , 2007, Cerebral cortex.

[3]  M. Perenin,et al.  Cortical control of visually guided reaching: evidence from patients with optic ataxia. , 2005, Cerebral cortex.

[4]  Jonathan D. Nelson,et al.  Multiple Parietal Reach Regions in Humans: Cortical Representations for Visual and Proprioceptive Feedback during On-Line Reaching , 2009, The Journal of Neuroscience.

[5]  Marco Iacoboni,et al.  Visuo-motor integration and control in the human posterior parietal cortex: Evidence from TMS and fMRI , 2006, Neuropsychologia.

[6]  A. Fuchs,et al.  Further properties of the human saccadic system: eye movements and correction saccades with and without visual fixation points. , 1969, Vision research.

[7]  Scott T. Grafton,et al.  Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp , 2005, Nature Neuroscience.

[8]  Alan C. Evans,et al.  Detecting and estimating the regions of activation in CBF activation studies in human brain , 2007 .

[9]  Stephen M Smith,et al.  Variability in fMRI: A re‐examination of inter‐session differences , 2005, Human brain mapping.

[10]  Scott T. Grafton,et al.  Forward modeling allows feedback control for fast reaching movements , 2000, Trends in Cognitive Sciences.

[11]  M. Desmurget,et al.  An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia , 2000, Nature Neuroscience.

[12]  J. Culham,et al.  The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? , 2006, Neuropsychologia.

[13]  Rüdiger J. Seitz,et al.  Functional clusters in the human parietal cortex as revealed by an observer-independent meta-analysis of functional activation studies , 2005, Anatomy and Embryology.

[14]  C Dohle,et al.  Human anterior intraparietal area subserves prehension , 1998, Neurology.

[15]  Xiaogang Yan,et al.  Transcranial magnetic stimulation over human dorsal-lateral posterior parietal cortex disrupts integration of hand position signals into the reach plan. , 2008, Journal of neurophysiology.

[16]  K. Lynch,et al.  The Separate Neural Control of Hand Movements and Contact Forces , 2009, The Journal of Neuroscience.

[17]  Kenneth F. Valyear,et al.  Human parietal cortex in action , 2006, Current Opinion in Neurobiology.

[18]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  Frank Bremmer,et al.  The encoding of saccadic eye movements within human posterior parietal cortex , 2004, NeuroImage.

[20]  P. van Donkelaar,et al.  Transcranial magnetic stimulation disrupts eye-hand interactions in the posterior parietal cortex. , 2000, Journal of neurophysiology.

[21]  E. Naito,et al.  Somatic Sensation of Hand-Object Interactive Movement Is Associated with Activity in the Left Inferior Parietal Cortex , 2006, The Journal of Neuroscience.

[22]  Roberta L. Klatzky,et al.  Embodiment, ego-space, and action , 2008 .

[23]  Patrick Haggard,et al.  Motor awareness without perceptual awareness , 2005, Neuropsychologia.

[24]  J. Vercher,et al.  Target and hand position information in the online control of goal-directed arm movements , 2003, Experimental Brain Research.

[25]  F. Binkofski,et al.  Parietal modules for reaching , 2009, Neuropsychologia.

[26]  D. Boussaoud,et al.  Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways , 2002, Experimental Brain Research.

[27]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[28]  Gereon R. Fink,et al.  Inhibition of the anterior intraparietal area and the dorsal premotor cortex interfere with arbitrary visuo-motor mapping , 2010, Clinical Neurophysiology.

[29]  Scott T. Grafton,et al.  Role of the posterior parietal cortex in updating reaching movements to a visual target , 1999, Nature Neuroscience.

[30]  Thomas Kammer,et al.  Anisotropy in the visual cortex investigated by neuronavigated transcranial magnetic stimulation , 2007, NeuroImage.

[31]  Karl J. Friston,et al.  Variability in fMRI: An Examination of Intersession Differences , 2000, NeuroImage.

[32]  Flavia Filimon Human Cortical Control of Hand Movements: Parietofrontal Networks for Reaching, Grasping, and Pointing , 2010, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[33]  C. Prablanc,et al.  Automatic control during hand reaching at undetected two-dimensional target displacements. , 1992, Journal of neurophysiology.

[34]  B. L. Zuber,et al.  Saccadic suppression: elevation of visual threshold associated with saccadic eye movements. , 1966, Experimental neurology.

[35]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[36]  Emad N Eskandar,et al.  Distinct nature of directional signals among parietal cortical areas during visual guidance. , 2002, Journal of neurophysiology.

[37]  Yasmin L. Hashambhoy,et al.  Neural Correlates of Reach Errors , 2005, The Journal of Neuroscience.

[38]  Jonathan D. Nelson,et al.  Human cortical representations for reaching: Mirror neurons for execution, observation, and imagery , 2007, NeuroImage.

[39]  Roberta L. Klatzky,et al.  fMRI Investigations of Reaching and Ego Space in Human Superior Parieto-Occipital Cortex , 2008 .

[40]  J. Vercher,et al.  Online control of the direction of rapid reaching movements , 2004, Experimental Brain Research.

[41]  N. Kanwisher,et al.  Neuroimaging of cognitive functions in human parietal cortex , 2001, Current Opinion in Neurobiology.

[42]  D G von Keyserlingk,et al.  Representation of cortical motor function as revealed by stereotactic transcranial magnetic stimulation. , 1998, Electroencephalography and clinical neurophysiology.

[43]  Scott T. Grafton,et al.  Functional Anatomy of Nonvisual Feedback Loops during Reaching: A Positron Emission Tomography Study , 2001, The Journal of Neuroscience.

[44]  G. Fink,et al.  REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys , 2005, Journal of anatomy.

[45]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Lateral Premotor Cortex Identifies Dorsal and Ventral Subregions with Anatomical and Functional Specializations , 2007, The Journal of Neuroscience.

[46]  Ivan Toni,et al.  Perceptuo-Motor Interactions during Prehension Movements , 2008, The Journal of Neuroscience.

[47]  Heinrich H Bülthoff,et al.  Seeing the hand while reaching speeds up on‐line responses to a sudden change in target position , 2009, The Journal of physiology.

[48]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[49]  G. Thickbroom,et al.  Transcranial magnetic stimulation mapping of the motor cortex in normal subjects The representation of two intrinsic hand muscles , 1993, Journal of the Neurological Sciences.

[50]  Alan Cowey,et al.  The Ferrier Lecture 2004 What can transcranial magnetic stimulation tell us about how the brain works? , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[51]  Qing Yang,et al.  TMS over the left posterior parietal cortex prolongs latency of contralateral saccades and convergence. , 2004, Investigative ophthalmology & visual science.

[52]  Alan Cowey,et al.  Temporal aspects of visual search studied by transcranial magnetic stimulation , 1997, Neuropsychologia.

[53]  Gereon R. Fink,et al.  Human medial intraparietal cortex subserves visuomotor coordinate transformation , 2004, NeuroImage.

[54]  John W. Krakauer,et al.  Independent learning of internal models for kinematic and dynamic control of reaching , 1999, Nature Neuroscience.

[55]  Scott T Grafton,et al.  The Anterior Intraparietal Sulcus Mediates Grasp Execution, Independent of Requirement to Update: New Insights from Transcranial Magnetic Stimulation , 2006, The Journal of Neuroscience.

[56]  Scott H. Johnson-Frey The neural bases of complex tool use in humans , 2004, Trends in Cognitive Sciences.

[57]  Scott T. Grafton,et al.  Beyond grasping: Representation of action in human anterior intraparietal sulcus , 2007, NeuroImage.

[58]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[59]  K. Zilles,et al.  Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys , 2001, Neuron.

[60]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[61]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[62]  J. Assad,et al.  Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance , 1999, Nature Neuroscience.

[63]  Paul M. Frank,et al.  Advances in control : highlights of ECC '99 , 1999 .