Global time evolution of viscous vortex rings

This article gives an overview of growing knowledge of translation speed of an axisymmetric vortex ring, with focus on the influence of viscosity. Helmholtz-Lamb’s method provides a short-cut to manipulate the translation speed at both small and large Reynolds numbers, for a vortex ring starting from an infinitely thin core. The resulting asymptotics significantly improve Saffman’s formula (1970) and give closer lower and upper bounds on translation speed in an early stage. At large Reynolds numbers, Kelvin-Benjamin’s kinematic variational principle achieves a further simplification. At small Reynolds numbers, the whole life of a vortex ring is available from the vorticity obeying the Stokes equations, which is closely fitted, over a long time, by Saffman’s second formula.

[1]  B. Cantwell,et al.  The decay of a viscous vortex pair , 1988 .

[2]  O. Phillips The final period of decay of non-homogeneous turbulence , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  T. Benjamin,et al.  The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics , 1976 .

[4]  Kamran Mohseni,et al.  A formulation for calculating the translational velocity of a vortex ring or pair , 2006, Bioinspiration & biomimetics.

[5]  Yasuhide Fukumoto,et al.  Global time evolution of an axisymmetric vortex ring at low Reynolds numbers , 2008 .

[6]  Y. Fukumoto A Unified View of Topological Invariants of Fluid Flows , 2008 .

[7]  F. Dyson,et al.  The Potential of an Anchor Ring. Part II , 1893 .

[8]  Paul H. Roberts,et al.  A Hamiltonian theory for weakly interacting vortices , 1972 .

[9]  R. Donnelly,et al.  Dynamics of vortex rings , 1970 .

[10]  J. Norbury,et al.  A family of steady vortex rings , 1973, Journal of Fluid Mechanics.

[11]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[12]  H. Helmholtz Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. , 1858 .

[13]  F. Kaplanski,et al.  A model for the formation of optimal vortex rings taking into account viscosity , 2005 .

[14]  Paul H. Roberts,et al.  Motions in a Bose condensate: IV. Axisymmetric solitary waves , 1982 .

[15]  F. Dyson The Potential of an Anchor Ring , 2010 .

[16]  Morteza Gharib,et al.  On the evolution of laminar vortex rings , 1997 .

[17]  John O. Dabiri,et al.  Fluid entrainment by isolated vortex rings , 2004, Journal of Fluid Mechanics.

[18]  Yasuhide Fukumoto,et al.  The velocity field induced by a helical vortex tube , 2005 .

[19]  L. E. Fraenkel,et al.  Examples of steady vortex rings of small cross-section in an ideal fluid , 1972, Journal of Fluid Mechanics.

[20]  Kazufumi Kimoto,et al.  Alpha-determinant cyclic modules and Jacobi polynomials , 2007, 0710.3669.

[21]  C. Tung,et al.  Motion and Decay of a Vortex Ring , 1967 .

[22]  H. K. Moffatt Generalised vortex rings with and without swirl , 1988 .

[23]  G. Burton Vortex-rings of prescribed impulse , 2003, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  A numerical study of viscous vortex rings using a spectral method , 1988 .

[25]  R. Wood,et al.  Vortex Rings , 1901, Nature.

[26]  T. Kambe,et al.  Generation and Decay of Viscous Vortex Rings , 1975 .

[27]  P. Saffman,et al.  The Velocity of Viscous Vortex Rings , 1970 .

[28]  T. Maxworthy The structure and stability of vortex rings , 1972, Journal of Fluid Mechanics.

[29]  A. Callegari,et al.  Motion of a curved vortex filament with decaying vortical core and axial velocity , 1978 .

[30]  H. K. Moffatt,et al.  Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity , 2000, Journal of Fluid Mechanics.

[31]  J. J. Sir Thomson,et al.  A Treatise on the Motion of Vortex Rings: An Essay to Which the Adams Prize Was Adjudged in 1882, in the University of Cambridge , 1883 .

[32]  Ionut Danaila,et al.  Numerical simulation of the postformation evolution of a laminar vortex ring , 2008 .

[33]  Y. Fukumoto Three-dimensional motion of a vortex filament and its relation to the localized induction hierarchy , 2002 .

[34]  H. K. Moffatt Structure and stability of solutions of the Euler equations: a lagrangian approach , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[35]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[36]  Morgan Heikal,et al.  A generalized vortex ring model , 2009, Journal of Fluid Mechanics.

[37]  Brian J. Cantwell,et al.  Vortex drift. I: Dynamic interpretation , 1993 .

[38]  L. E. Fraenkel,et al.  On steady vortex rings of small cross-section in an ideal fluid , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[40]  Russell J. Donnelly,et al.  Quantized Vortices in Helium II , 1991 .

[41]  S. W. Thomson LII. On the stability of steady and of periodic fluid motion , 1887 .

[42]  H. K. Moffatt,et al.  Kinematic variational principle for motion of vortex rings , 2008 .

[43]  Y. Fukumoto Higher-order asymptotic theory for the velocity field induced by an inviscid vortex ring , 2002 .

[44]  William Mitchinson Hicks,et al.  XV. Researches on the theory of vortex rings.—Part II , 1885, Philosophical Transactions of the Royal Society of London.