Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA) kinetics.

[1]  I. Chou,et al.  Recent developments in parameter estimation and structure identification of biochemical and genomic systems. , 2009, Mathematical biosciences.

[2]  F. David,et al.  Parameter Estimation in Engineering and Science , 1977 .

[3]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[4]  C Giersch Mathematical modelling of metabolism. , 2000, Current opinion in plant biology.

[5]  I. Birol,et al.  Metabolic control analysis under uncertainty: framework development and case studies. , 2004, Biophysical journal.

[6]  V. Hatzimanikatis,et al.  Thermodynamics-based metabolic flux analysis. , 2007, Biophysical journal.

[7]  Rudiyanto Gunawan,et al.  Parameter identifiability of power-law biochemical system models. , 2010, Journal of biotechnology.

[8]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[9]  Leonid Khachiyan,et al.  Rounding of Polytopes in the Real Number Model of Computation , 1996, Math. Oper. Res..

[10]  E O Voit,et al.  Estimation of metabolic pathway systems from different data sources. , 2009, IET systems biology.

[11]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[12]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[13]  J. Arnold,et al.  An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Rudiyanto Gunawan,et al.  Iterative approach to model identification of biological networks , 2005, BMC Bioinformatics.

[15]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[16]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[17]  Eberhard O. Voit,et al.  Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists , 2000 .

[18]  C. Chassagnole,et al.  Dynamic modeling of the central carbon metabolism of Escherichia coli. , 2002, Biotechnology and bioengineering.

[19]  J. Stelling,et al.  Ensemble modeling for analysis of cell signaling dynamics , 2007, Nature Biotechnology.

[20]  Eberhard O Voit,et al.  Complex coordination of multi-scale cellular responses to environmental stress. , 2011, Molecular bioSystems.

[21]  Sang Ok Song,et al.  Ensembles of signal transduction models using Pareto Optimal Ensemble Techniques (POETs). , 2010, Biotechnology journal.

[22]  Robert V. Brill,et al.  Applied Statistics and Probability for Engineers , 2004, Technometrics.

[23]  Edda Klipp,et al.  Automated Ensemble Modeling with modelMaGe: Analyzing Feedback Mechanisms in the Sho1 Branch of the HOG Pathway , 2011, PloS one.

[24]  Eberhard O. Voit,et al.  Estimation of dynamic flux profiles from metabolic time series data , 2012, BMC Systems Biology.

[25]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[26]  Melvin Alexander Applied Statistics and Probability for Engineers , 1995 .

[27]  I. E. Nikerel,et al.  Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics. , 2009, Metabolic engineering.

[28]  Jonas S. Almeida,et al.  Decoupling dynamical systems for pathway identification from metabolic profiles , 2004, Bioinform..

[29]  H. Akaike A new look at the statistical model identification , 1974 .

[30]  V. Hatzimanikatis,et al.  Modeling of uncertainties in biochemical reactions , 2011, Biotechnology and bioengineering.

[31]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[32]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[33]  Jonas S. Almeida,et al.  Identification of neutral biochemical network models from time series data , 2009, BMC Syst. Biol..

[34]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[35]  Marc Hafner,et al.  Efficient characterization of high-dimensional parameter spaces for systems biology , 2011, BMC Systems Biology.

[36]  A Sorribas,et al.  Structure identifiability in metabolic pathways: parameter estimation in models based on the power-law formalism. , 1994, The Biochemical journal.

[37]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[38]  Dominique Bonvin,et al.  Incremental Identification of Kinetic Models for Homogeneous Reaction Systems , 2006 .

[39]  B. Palsson Systems Biology: Properties of Reconstructed Networks , 2006 .

[40]  Z. Kutalik,et al.  Estimating parameters for generalized mass action models using constraint propagation. , 2007, Mathematical biosciences.

[41]  J. Liao,et al.  Ensemble modeling of metabolic networks. , 2008, Biophysical journal.

[42]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[43]  W. Marquardt,et al.  Incremental and simultaneous identification of reaction kinetics: methods and comparison , 2004 .

[44]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[45]  Eberhard O. Voit,et al.  System estimation from metabolic time-series data , 2008, Bioinform..