Coding of Cognitive Magnitude Compressed Scaling of Numerical Information in the Primate Prefrontal Cortex

[1]  Charles Wallis,et al.  Computation and cognition , 2003, J. Exp. Theor. Artif. Intell..

[2]  David J. Freedman,et al.  Representation of the Quantity of Visual Items in the Primate Prefrontal Cortex , 2002, Science.

[3]  Kenneth O. Johnson,et al.  Review: Neural Coding and the Basic Law of Psychophysics , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[4]  S. Carey,et al.  The Representations Underlying Infants' Choice of More: Object Files Versus Analog Magnitudes , 2002, Psychological science.

[5]  Rochel Gelman,et al.  Variability signatures distinguish verbal from nonverbal counting for both large and small numbers , 2001, Psychonomic bulletin & review.

[6]  S. Kosslyn,et al.  Neural foundations of imagery , 2001, Nature Reviews Neuroscience.

[7]  S. Dehaene Subtracting Pigeons: Logarithmic or Linear? , 2001, Psychological science.

[8]  C R Gallistel,et al.  Numerical Subtraction in the Pigeon: Evidence for a Linear Subjective Number Scale , 2001, Psychological science.

[9]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[10]  C. Gallistel,et al.  Non-verbal numerical cognition: from reals to integers , 2000, Trends in Cognitive Sciences.

[11]  L. Barsalou,et al.  Whither structured representation? , 1999, Behavioral and Brain Sciences.

[12]  G. Fechner Elemente der Psychophysik , 1998 .

[13]  S. Dehaene,et al.  Abstract representations of numbers in the animal and human brain , 1998, Trends in Neurosciences.

[14]  A. Parker,et al.  Sense and the single neuron: probing the physiology of perception. , 1998, Annual review of neuroscience.

[15]  S. Kosslyn,et al.  Topographical representations of mental images in primary visual cortex , 1995, Nature.

[16]  S. Kosslyn Image and Brain: The Resolution of the Imagery Debate , 1994, Journal of Cognitive Neuroscience.

[17]  S. Kosslyn Image and Brain , 1994 .

[18]  Stanislas Dehaene,et al.  Development of Elementary Numerical Abilities: A Neuronal Model , 1993, Journal of Cognitive Neuroscience.

[19]  S. Dehaene Varieties of numerical abilities , 1992, Cognition.

[20]  S. Dehaene,et al.  Cross-linguistic regularities in the frequency of number words , 1992, Cognition.

[21]  Nigel G. Ward Computation and cognition: Toward a foundation for cognitive science. Z. Pylyshyn, (MIT Press, Cambridge, MA, 1984); 292 pages, $33.75 (hardcover), $9.95 (paperback) , 1987 .

[22]  P. G. Vos,et al.  A probabilistic model for the discrimination of visual number , 1982, Perception & psychophysics.

[23]  R. Church,et al.  Time left: linear versus logarithmic subjective time. , 1981, Journal of experimental psychology. Animal behavior processes.

[24]  J. Gibbon Scalar expectancy theory and Weber's law in animal timing. , 1977 .

[25]  J. Fodor The Language of Thought , 1980 .

[26]  R. Shepard,et al.  Mental Rotation of Three-Dimensional Objects , 1971, Science.

[27]  V. Mountcastle,et al.  The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. , 1968, Journal of neurophysiology.

[28]  ROBERT S. MOYER,et al.  Time required for Judgements of Numerical Inequality , 1967, Nature.

[29]  Alexander Joseph Book reviewDischarge patterns of single fibers in the cat's auditory nerve: Nelson Yuan-Sheng Kiang, with the assistance of Takeshi Watanabe, Eleanor C. Thomas and Louise F. Clark: Research Monograph no. 35. Cambridge, Mass., The M.I.T. Press, 1965 , 1967 .

[30]  I Abramov,et al.  Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque. , 1967, Journal of neurophysiology.

[31]  I. Whitfield Discharge Patterns of Single Fibers in the Cat's Auditory Nerve , 1966 .

[32]  V. Mountcastle,et al.  NEURAL ACTIVITY IN MECHANORECEPTIVE CUTANEOUS AFFERENTS: STIMULUS-RESPONSE RELATIONS, WEBER FUNCTIONS, AND INFORMATION TRANSMISSION. , 1965, Journal of neurophysiology.

[33]  D. M. MacKay,et al.  Psychophysics of Perceived Intensity: A Theoretical Basis for Fechner's and Stevens' Laws , 1963, Science.

[34]  S S Stevens,et al.  To Honor Fechner and Repeal His Law: A power function, not a log function, describes the operating characteristic of a sensory system. , 1961, Science.