An Efficient Parallel Algorithm for the Symmetric Tridiagonal Eigenvalue Problem

An efficient parallel algorithm, which we dubbed farmzeroinNR, for the eigenvalue problem of a symmetric tridiagonal matrix has been implemented in a distributed memory multiprocessor with 112 nodes [1]. The basis of our parallel implementation is an improved version of the zeroinNR method [2]. It is consistently faster than simple bisection and produces more accurate eigenvalues than the QR method. As it happens with bisection, zeroinNR exhibits great flexibility and allows the computation of a subset of the spectrum with some prescribed accuracy. Results were carried out with matrices of different types and sizes up to 104 and show that our algorithm is efficient and scalable.

[1]  David J. Evans,et al.  A Parallel Organisation of the Bisection Algorithm , 1979, Comput. J..

[2]  Jack Dongarra,et al.  ScaLAPACK user's guide , 1997 .

[3]  Theodore Kalamboukis The symmetric tridiagonal eigenvalue problem on a transputer network , 1990, Parallel Comput..

[4]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[5]  Ahmed H. Sameh,et al.  A multiprocessor algorithm for the symmetric tridiagonal eigenvalue problem , 1985, PPSC.

[6]  J. Demmel,et al.  On the correctness of some bisection-like parallel eigenvalue algorithms in floating point arithmetic. , 1995 .

[7]  Jack J. Dongarra,et al.  A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.

[8]  Beresford N. Parlett,et al.  An implementation of the dqds algorithm (positive case) , 2000 .

[9]  A. Ralston A first course in numerical analysis , 1965 .

[10]  Ilse C. F. Ipsen,et al.  Solving the Symmetric Tridiagonal Eigenvalue Problem on the Hypercube , 1990, SIAM J. Sci. Comput..

[11]  B. Parlett,et al.  Accurate singular values and differential qd algorithms , 1994 .

[12]  Peter Weidner,et al.  A parallel algorithm for determining all eigenvalues of large real symmetric tridiagonal matrices , 1992, Parallel Comput..

[13]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[14]  James Demmel,et al.  Parallel numerical linear algebra , 1993, Acta Numerica.

[15]  J. H. Wilkinson Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection , 1962 .

[16]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[17]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[18]  H. Bernstein An accelerated bisection method for the calculation of eigenvalues of a symmetric tridiagonal matrix , 2015 .

[19]  Rui Ralha Parallel computation of eigenvalues and eigenvectors using Occam and transputers , 1990 .

[20]  B. Parlett,et al.  Relatively robust representations of symmetric tridiagonals , 2000 .