A posteriori error estimates with post-processing for nonconforming finite elements

For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is exploited that the nonconforming finite element space contains as a subspace a conforming finite element space of first order. This property is fulfilled for many known nonconforming spaces. We prove local lower and global upper a posteriori error estimates for an enhanced error measure which is the discretization error in the discrete energy norm plus the error of the best representation of the exact solution by a function in the conforming space used for the post-processing. We demonstrate that the idea to use a computed conforming approximation of the nonconforming solution can be applied also to derive an a posteriori error estimate for a linear functional of the solution which represents some quantity of physical interest.

[1]  Jean Elizabeth Roberts,et al.  A constructive method for deriving finite elements of nodal type , 1988 .

[2]  J. Douglas,et al.  A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier–Stokes equations , 1999 .

[3]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[4]  Volker John,et al.  A posteriori L 2 -error estimates for the nonconforming P 1 / P 0 -finite element discretization of the Stokes equations , 1998 .

[5]  R. Durán,et al.  A posteriori error estimators for nonconforming finite element methods , 1996 .

[6]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[7]  L. Angermann A posteriori error estimates for FEM with violated Galerkin orthogonality , 2002 .

[8]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[9]  Rolf Rannacher,et al.  Adaptive Galerkin finite element methods for partial differential equations , 2001 .

[10]  Rolf Rannacher,et al.  Fast and reliable solution of the Navier–Stokes equations including chemistry , 1999 .

[11]  Guido Kanschat,et al.  A posteriori error estimates¶for nonconforming finite element schemes , 1999 .

[12]  R. Rannacher Error Control in Finite Element Computations , 1999 .

[13]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[14]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[15]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[16]  Friedhelm Schieweck,et al.  A Parallel Multigrid Algorithm for Solving the Navier-Stokes Equations , 1993, IMPACT Comput. Sci. Eng..

[17]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[18]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[19]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[20]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[21]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[22]  R. Durán,et al.  Error estimators for nonconforming finite element approximations of the Stokes problem , 1995 .

[23]  Ronald H. W. Hoppe,et al.  Element oriented and edge oriented local error estimators for nonconforming finite element methods , 1992, Forschungsberichte, TU Munich.

[24]  Carsten Carstensen,et al.  A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.