Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes

Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attraction artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported relationships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of substitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolving deep relationships.

[1]  W. Burger The piperales and the monocots , 1977, The Botanical Review.

[2]  R. P. Wodehouse Evolution of pollen grains , 1936, The Botanical Review.

[3]  Leo J. Hickey,et al.  Early cretaceous fossil evidence for angiosperm evolution , 2008, The Botanical Review.

[4]  Y. Qiu,et al.  A Nonflowering Land Plant Phylogeny Inferred from Nucleotide Sequences of Seven Chloroplast, Mitochondrial, and Nuclear Genes , 2007, International Journal of Plant Sciences.

[5]  Hardeep,et al.  Robust Inference of Monocot Deep Phylogeny Using an Expanded Multigene Plastid Data Set , 2006 .

[6]  Jeffrey P. Mower,et al.  Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae , 2005, BMC Evolutionary Biology.

[7]  B. Holland,et al.  Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. , 2005, Molecular biology and evolution.

[8]  R. Gutell,et al.  Phylogenetic Analyses of Basal Angiosperms Based on Nine Plastid, Mitochondrial, and Nuclear Genes , 2005, International Journal of Plant Sciences.

[9]  K. Pryer,et al.  Incongruence between primary sequence data and the distribution of a mitochondrial atp1 group II intron among ferns and horsetails. , 2005, Molecular phylogenetics and evolution.

[10]  Ya-long Guo,et al.  Molecular Phylogeny of Oryzeae (poaceae) Based on Dna Sequences from Chloroplast, Mitochondrial, and Nuclear Genomes Ya-long Guo 2 and Song Ge , 2022 .

[11]  E. M. Friis,et al.  Teixeiria lusitanica, a new fossil flower from the Early Cretaceous of Portugal with affinities to Ranunculales , 2005, Plant Systematics and Evolution.

[12]  Jim Leebens-Mack,et al.  Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. , 2005, Molecular biology and evolution.

[13]  T. Borsch,et al.  Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. , 2005, Molecular biology and evolution.

[14]  Felix Grewe,et al.  Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. , 2004, Molecular biology and evolution.

[15]  S. Beckert,et al.  A molecular phylogeny of bryophytes based on nucleotide sequences of the mitochondrialnad5 gene , 1999, Plant Systematics and Evolution.

[16]  Jeffrey P. Mower,et al.  Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Pamela S Soltis,et al.  Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. , 2004, American journal of botany.

[18]  E. M. Friis,et al.  Araceae from the Early Cretaceous of Portugal: evidence on the emergence of monocotyledons. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Palmer,et al.  Erratum: Many independent origins of trans splicing of a plant mitochondrial group II intron (Journal of Molecular Evolution (2004) 59 (80-89)) , 2004 .

[20]  J. Palmer,et al.  Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? , 2004, BMC Evolutionary Biology.

[21]  V. Knoop The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective , 2004, Current Genetics.

[22]  L. Yusheng,et al.  Early Cretaceous Archaefructus eoflora sp. nov. with Bisexual Flowers from Beipiao, Western Liaoning, China , 2004 .

[23]  C. Davis,et al.  Host-to-Parasite Gene Transfer in Flowering Plants: Phylogenetic Evidence from Malpighiales , 2004, Science.

[24]  Y. Qiu,et al.  Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. , 2004, Molecular phylogenetics and evolution.

[25]  J. Palmer,et al.  Many Independent Origins of trans Splicing of a Plant Mitochondrial Group II Intron , 2004, Journal of Molecular Evolution.

[26]  Jerrold I. Davis,et al.  A Phylogeny of the Monocots, as Inferred from rbcL and atpA Sequence Variation, and a Comparison of Methods for Calculating Jackknife and Bootstrap Values , 2004 .

[27]  M. Hasebe,et al.  Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes , 2004, Journal of Plant Research.

[28]  C. Cox,et al.  Phylogenetic Relationships among the Mosses Based on Heterogeneous Bayesian Analysis of Multiple Genes from Multiple Genomic Compartments , 2004 .

[29]  Pamela S Soltis,et al.  Darwin's abominable mystery: Insights from a supertree of the angiosperms , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Nais,et al.  Mitochondrial DNA sequences reveal the photosynthetic relatives of Rafflesia, the world's largest flower. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. Herendeen,et al.  Morphological Phylogenetic Analysis of Living and Fossil Chloranthaceae , 2004, International Journal of Plant Sciences.

[32]  P. Crane Paleobotanical evidence on the early radiation of nonmagnoliid dicotyledons , 1989, Plant Systematics and Evolution.

[33]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[34]  C. Neinhuis,et al.  Angiosperm phylogeny based on matK sequence information. , 2003, American journal of botany.

[35]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[36]  H. Won,et al.  Horizontal gene transfer from flowering plants to Gnetum , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  V. Goremykin,et al.  Analysis of the Amborella trichopoda chloroplast genome sequence suggests that amborella is not a basal angiosperm. , 2003, Molecular biology and evolution.

[38]  Jeffrey D. Palmer,et al.  Widespread horizontal transfer of mitochondrial genes in flowering plants , 2003, Nature.

[39]  W. Barthlott,et al.  Noncoding plastid trnT‐trnF sequences reveal a well resolved phylogeny of basal angiosperms , 2003, Journal of evolutionary biology.

[40]  T. Scharaschkin,et al.  Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution , 2003 .

[41]  T. Dawson,et al.  The Ancestral Ecology of Angiosperms: Emerging Perspectives from Extant Basal Lineages , 2003, International Journal of Plant Sciences.

[42]  Koichi Yoshinaga,et al.  RNA editing in hornwort chloroplasts makes more than half the genes functional. , 2003, Nucleic acids research.

[43]  D. Soltis,et al.  Phylogenetic analyses and perianth evolution in basal angiosperms , 2003 .

[44]  Apgii An update of the angiosperm phylogeny group classification for the orders and families of flowering plants : APGII , 2003 .

[45]  D. Soltis,et al.  Molecular data place Hydnoraceae with Aristolochiaceae. , 2002, American journal of botany.

[46]  J. Palmer,et al.  Inaugural Article: Punctuated evolution of mitochondrial gene content: High and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution , 2002 .

[47]  M. Donoghue,et al.  The root of the angiosperms revisited , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  K. Nixon,et al.  Archaefructaceae, a New Basal Angiosperm Family , 2002, Science.

[49]  M. Källersjö,et al.  Phylogenetic relationships in the order Ericales s.l.: analyses of molecular data from five genes from the plastid and mitochondrial genomes. , 2002, American journal of botany.

[50]  Dolores R. Piperno,et al.  Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  David Swofford,et al.  PAUP* 4.0 : Phylogenetic Analysis Using Parsimony , 2002 .

[52]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[53]  J. Palmer,et al.  The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. , 2001, Molecular phylogenetics and evolution.

[54]  E. M. Friis,et al.  Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous , 2001, Nature.

[55]  S. Beckert,et al.  The mitochondrial nad2 gene as a novel marker locus for phylogenetic analysis of early land plants: a comparative analysis in mosses. , 2001, Molecular phylogenetics and evolution.

[56]  James Lyons-Weiler,et al.  Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[57]  J. Doyle,et al.  Morphological Phylogenetic Analysis of Basal Angiosperms: Comparison and Combination with Molecular Data , 2000, International Journal of Plant Sciences.

[58]  M. Donoghue,et al.  Basal Angiosperm Phylogeny Inferred from Duplicate Phytochromes A and C , 2000, International Journal of Plant Sciences.

[59]  R. Olmstead,et al.  Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. , 2000, American journal of botany.

[60]  D. Soltis,et al.  Phylogeny of Basal Angiosperms: Analyses of Five Genes from Three Genomes1 , 2000, International Journal of Plant Sciences.

[61]  P. K. Endress,et al.  Gynoecium Structure and Evolution in Basal Angiosperms , 2000, International Journal of Plant Sciences.

[62]  F. B. Sampson Pollen Diversity in Some Modern Magnoliids , 2000, International Journal of Plant Sciences.

[63]  E. M. Friis,et al.  Early Angiosperms from the Lower Cretaceous Crato Formation (Brazil), a Preliminary Report , 2000, International Journal of Plant Sciences.

[64]  S. Floyd,et al.  Evolution of Endosperm Developmental Patterns among Basal Flowering Plants , 2000, International Journal of Plant Sciences.

[65]  L. B. Thien,et al.  New Perspectives on the Pollination Biology of Basal Angiosperms , 2000, International Journal of Plant Sciences.

[66]  E. M. Friis,et al.  Reproductive Structure and Organization of Basal Angiosperms from the Early Cretaceous (Barremian or Aptian) of Western Portugal , 2000, International Journal of Plant Sciences.

[67]  W. Kress,et al.  Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences , 2000 .

[68]  D. Soltis,et al.  Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. , 2000, Systematic biology.

[69]  T. Sang,et al.  Phylogeny and divergence times in Pinaceae: evidence from three genomes. , 2000, Molecular biology and evolution.

[70]  J. Palmer,et al.  Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[71]  C. dePamphilis,et al.  Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Palmer,et al.  Multigene analyses identify the three earliest lineages of extant flowering plants , 1999, Current Biology.

[73]  D. Soltis,et al.  Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology , 1999, Nature.

[74]  Mark W. Chase,et al.  The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes , 1999, Nature.

[75]  M. Donoghue,et al.  The root of angiosperm phylogeny inferred from duplicate phytochrome genes. , 1999, Science.

[76]  S. Renner,et al.  Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data. , 1999, American journal of botany.

[77]  J. Farris,et al.  Homoplasy Increases Phylogenetic Structure , 1999 .

[78]  V. Knoop,et al.  Phylogenetic Information in the Mitochondrial nad5 Gene of Pteridophytes: RNA Editing and Intron Sequences , 1999 .

[79]  R. Duff,et al.  Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. , 1999, American journal of botany.

[80]  I. Capesius,et al.  Plant Mitochondrial RNA Editing , 1999, Journal of Molecular Evolution.

[81]  S. B. Hoot,et al.  Phylogeny of Basal Eudicots Based on Three Molecular Data Sets: atpB, rbcL, and 18s Nuclear Ribosomal DNA Sequences , 1999 .

[82]  Peter R. Crane,et al.  Early angiosperm diversification : The diversity of pollen associated with angiosperm reproductive structures in early Cretaceous floras from Portugal , 1999 .

[83]  Palmer,et al.  Phylogeny of early land plants: insights from genes and genomes. , 1999, Trends in plant science.

[84]  V. Knoop,et al.  Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort. , 1998, RNA.

[85]  M. Nei,et al.  The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Yangrae Cho,et al.  The gain of three mitochondrial introns identifies liverworts as the earliest land plants , 1998, Nature.

[87]  Jerrold I. Davis,et al.  Data decisiveness, data quality, and incongruence in phylogenetic analysis: an example from the monocotyledons using mitochondrial atp A sequences. , 1998, Systematic biology.

[88]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[89]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[90]  W. John Kress,et al.  Angiosperm Phylogeny Inferred from 18S Ribosomal DNA Sequences , 1997 .

[91]  C. dePamphilis,et al.  Effects of RNA editing and gene processing on phylogenetic reconstruction. , 1996, Molecular biology and evolution.

[92]  A. Brennicke,et al.  RNA editing in bryophytes and a molecular phylogeny of land plants. , 1996, The EMBO journal.

[93]  P. Herendeen The fossil history of the monocotyledons , 1995 .

[94]  M. Donoghue,et al.  Shifts in Diversification Rate with the Origin of Angiosperms , 1994, Science.

[95]  A. von Haeseler,et al.  Plant mitochondrial nucleic acid sequences as a tool for phylogenetic analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[96]  E. M. Friis,et al.  Angiosperm floral structures from the Early Cretaceous of Portugal , 1994 .

[97]  C. R. Parks,et al.  Molecular Phylogenetics of the Magnoliidae: Cladistic Analyses of Nucleotide Sequences of the Plastid Gene rbcL , 1993 .

[98]  James F. Smith Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .

[99]  K. Kubitzki,et al.  Flowering Plants · Dicotyledons , 1993, The Families and Genera of Vascular Plants.

[100]  E. Zimmer,et al.  Ribosomal RNA as a Phylogenetic Tool in Plant Systematics , 1992 .

[101]  Jeffrey D. Palmer,et al.  Mitochondrial DNA in Plant Systematics: Applications and Limitations , 1992 .

[102]  A. Drinnan,et al.  Fruits from the mid-cretaceous of north america with pollen grains of the clavatipollenites type , 1991 .

[103]  P. G. Martin,et al.  Studies of Angiosperm Phylogeny using Protein Sequences , 1991 .

[104]  L. Hufford,et al.  The diversity of stamen structures and dehiscence patterns among Magnoliidae , 1989 .

[105]  D. Les The origin and affinities of the Ceratophyllaceae. , 1988 .

[106]  E. M. Friis,et al.  Floral evidence for Cretaceous chloranthoid angiosperms , 1986, Nature.

[107]  G. Upchurch Cuticle evolution in Early Cretaceous Angiosperms from the Potomac Group of Virginia and Maryland , 1984 .

[108]  James W. Walker,et al.  Ultrastructure of Lower Cretaceous Angiosperm Pollen and the Origin and Early Evolution of Flowering Plants , 1984 .

[109]  W. R. Anderson,et al.  An Integrated System of Classification of Flowering Plants , 1982 .

[110]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[111]  L. Hickey,et al.  Pollen and leaves from the Mid-Cretaceous Potomac group and their bearing on early angiosperm evolution , 1976 .

[112]  J. Doyle,et al.  The Bases of Angiosperm Phylogeny: Palynology , 1975 .

[113]  G. Ledyard Stebbins,et al.  Flowering Plants: Evolution Above the Species Level , 1975 .

[114]  A. Takhtajan,et al.  Flowering plants; origin and dispersal , 1970 .

[115]  J. Doyle Cretaceous angiosperm pollen of the Atlantic coastal plain and its evolutionary significance , 1969 .

[116]  G. Stebbins THE PROBABLE GROWTH HABIT OF THE EARLIEST FLOWERING PLANTS , 1965 .

[117]  I. Bailey,et al.  The Comparative Morphology of the Winteraceae: I. Pollen and Stamens , 1943, Journal of the Arnold Arboretum..

[118]  T. Just,et al.  Pollen Grains, Their Structure, Identification and Significance in Science and Medicine. , 1936 .

[119]  R. P. Wodehouse Pollen grains : their structure, indentification and significance in science and medicine , 1937 .

[120]  Y. Qiu,et al.  Was the ANITA Rooting of the Angiosperm Phylogeny Affected by LongBranch Attraction ? , 2022 .