A 3-Approximation Algorithm for Guarding Orthogonal Art Galleries with Sliding Cameras

Consider a sliding camera that travels back and forth along an orthogonal line segment s inside an orthogonal polygon P with n vertices. The camera can see a point p inside P if and only if there exists a line segment containing p that crosses s at a right angle and is completely contained in P. In the minimum sliding cameras (MSC) problem, the objective is to guard P with the minimum number of sliding cameras. In this paper, we give an O(n 5/2)-time (7/2)-approximation algorithm to the MSC problem on any simple orthogonal polygon with n vertices, answering a question posed by Katz and Morgenstern (2011). To the best of our knowledge, this is the first constant-factor approximation algorithm for this problem.

[1]  Simeon C. Ntafos,et al.  On Gallery Watchmen in Grids , 1986, Inf. Process. Lett..

[2]  Hans-Dietrich Hecker,et al.  Two NP-Hard Art-Gallery Problems for Ortho-Polygons , 1995, Math. Log. Q..

[3]  Pawel Zylinski,et al.  An Efficient Algorithm for Mobile Guarded Guards in Simple Grids , 2006, ICCSA.

[4]  Joseph S. B. Mitchell,et al.  Orthogonal segment stabbing , 2005, Comput. Geom..

[5]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[6]  J. Mark Keil,et al.  Polygon Decomposition and the Orthogonal Art Gallery Problem , 2007, Int. J. Comput. Geom. Appl..

[7]  Pawel Zylinski,et al.  Cooperative mobile guards in grids , 2007, Comput. Geom..

[8]  V. Chvátal A combinatorial theorem in plane geometry , 1975 .

[9]  Rajeev Motwani,et al.  Covering orthogonal polygons with star polygons: the perfect graph approach , 1988, SCG '88.

[10]  Stephan Johannes Eidenbenz,et al.  (In-)Approximability of visibility problems on polygons and terrains , 2000 .

[11]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[12]  Stephane Durocher,et al.  A 3-Approximation Algorithm for Guarding Orthogonal Art Galleries with Sliding Cameras , 2014, IWOCA.

[13]  D. T. Lee,et al.  Computational complexity of art gallery problems , 1986, IEEE Trans. Inf. Theory.

[14]  Subir Kumar Ghosh,et al.  Approximation algorithms for art gallery problems in polygons , 2010, Discret. Appl. Math..

[15]  Bengt J. Nilsson,et al.  Approximate Guarding of Monotone and Rectilinear Polygons , 2012, Algorithmica.

[16]  Stephane Durocher,et al.  Guarding Orthogonal Art Galleries Using Sliding Cameras: Algorithmic and Hardness Results , 2013, MFCS.

[17]  Stephan Eidenbenz,et al.  Inapproximability Results for Guarding Polygons without Holes , 1998, ISAAC.

[18]  Pawel Zylinski,et al.  Weakly Cooperative Guards in Grids , 2005, ICCSA.

[19]  J. Kahn,et al.  Traditional Galleries Require Fewer Watchmen , 1983 .

[20]  Michael Kaufmann,et al.  On the Rectilinear Art Gallery Problem - Algorithmic Aspects , 1990, WG.

[21]  Joseph S. B. Mitchell,et al.  The Art Gallery Theorem for Polyominoes , 2012, Discret. Comput. Geom..

[22]  Jorge Urrutia,et al.  Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.

[23]  Simeon C. Ntafos,et al.  Covering Grids and Orthogonal Polygons with Periscope Guards , 1992, Comput. Geom..