Effect of Nematic Order on the Low-Energy Spin Fluctuations in Detwinned BaFe_{1.935}Ni_{0.065}As_{2}.

The origin of nematic order remains one of the major debates in iron-based superconductors. In theories based on spin nematicity, one major prediction is that the spin-spin correlation length at (0,π) should decrease with decreasing temperature below the structural transition temperature T_{s}. Here, we report inelastic neutron scattering studies on the low-energy spin fluctuations in BaFe_{1.935}Ni_{0.065}As_{2} under uniaxial pressure. Both intensity and spin-spin correlation start to show anisotropic behavior at high temperature, while the reduction of the spin-spin correlation length at (0,π) happens just below T_{s}, suggesting the strong effect of nematic order on low-energy spin fluctuations. Our results favor the idea that treats the spin degree of freedom as the driving force of the electronic nematic order.