Fully deformable 3D digital partition model with topological control
暂无分享,去创建一个
[1] Jacques-Olivier Lachaud,et al. Multi-Label Simple Points Definition for 3D Images Digital Deformable Model , 2009, DGCI.
[2] Gilles Bertrand,et al. New Characterizations of Simple Points, Minimal Non-simple Sets and P-Simple Points in 2D, 3D and 4D Discrete Spaces , 2008, DGCI.
[3] Tony F. Chan,et al. Active contours without edges , 2001, IEEE Trans. Image Process..
[4] Vladimir Kolmogorov,et al. Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[5] V. Caselles,et al. A geometric model for active contours in image processing , 1993 .
[6] Hervé Le Men,et al. Scale-Sets Image Analysis , 2005, International Journal of Computer Vision.
[7] Pierre-Louis Bazin,et al. Digital Homeomorphisms in Deformable Registration , 2007, IPMI.
[8] Jacques-Olivier Lachaud,et al. Geometric Measures on Arbitrary Dimensional Digital Surfaces , 2003, DGCI.
[9] Yvan G. Leclerc,et al. Constructing simple stable descriptions for image partitioning , 1989, International Journal of Computer Vision.
[10] Demetri Terzopoulos,et al. Snakes: Active contour models , 2004, International Journal of Computer Vision.
[11] Baba C. Vemuri,et al. Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[12] Olga Veksler,et al. Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[13] Donald Geman,et al. Gibbs distributions and the bayesian restoration of images , 1984 .
[14] Jacques-Olivier Lachaud,et al. Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète. (Non-Euclidean spaces and image analysis : Riemannian and discrete deformable models, discrete topology and geometry) , 2006 .
[15] Alan L. Yuille,et al. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[16] Daniel Cremers,et al. A convex relaxation approach for computing minimal partitions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.
[17] Stuart German,et al. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1988 .
[18] Luc Brun,et al. Hierarchy Construction Schemes Within the Scale Set Framework , 2007, GbRPR.
[19] Guillermo Sapiro,et al. Minimal Surfaces Based Object Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[20] Guillaume Damiand,et al. First Results for 3D Image Segmentation with Topological Map , 2008, DGCI.
[21] Jacques-Olivier Lachaud,et al. Discrete Deformable Boundaries for the Segmentation of Multidimensional Images , 2001, IWVF.
[22] François de Vieilleville,et al. Fast, accurate and convergent tangent estimation on digital contours , 2007, Image Vis. Comput..
[23] Gabor T. Herman,et al. Geometry of digital spaces , 1998, Optics & Photonics.
[24] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[25] Daniel Cremers,et al. A convex approach for computing minimal partitions , 2008 .
[26] Jean-Philippe Pons,et al. Delaunay Deformable Models: Topology-Adaptive Meshes Based on the Restricted Delaunay Triangulation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[27] Alan C. Evans,et al. BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .
[28] Florent Ségonne,et al. Active Contours Under Topology Control—Genus Preserving Level Sets , 2008, International Journal of Computer Vision.
[29] Laurent D. Cohen,et al. Global Minimum for Active Contour Models: A Minimal Path Approach , 1997, International Journal of Computer Vision.
[30] Gilles Bertrand,et al. Simple points, topological numbers and geodesic neighborhoods in cubic grids , 1994, Pattern Recognit. Lett..
[31] D. Mumford,et al. Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .
[32] François de Vieilleville,et al. Digital Deformable Model Simulating Active Contours , 2009, DGCI.
[33] Oscar Firschein,et al. Readings in computer vision: issues, problems, principles, and paradigms , 1987 .
[34] Laurent D. Cohen,et al. Fast Constrained Surface Extraction by Minimal Paths , 2006, International Journal of Computer Vision.
[35] D. Greig,et al. Exact Maximum A Posteriori Estimation for Binary Images , 1989 .
[36] Vladimir A. Kovalevsky,et al. Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..
[37] Xiao Han,et al. A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[38] Tony F. Chan,et al. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.