Synthesis, Characterization and Applications of Nano-structured Metal Hexacyanoferrates: A Review

The present paper offers a review of recent work on synthesis, in situ , and applications of few metal hexacyanoferrate nanoparticles with the general formula M4[Fe(CN)6].xH2O where M is transition metal. Five such metal hexacyanoferrates (MHCF’s) compounds derived from Co, Zn, Fe, Cu and Ni with general introduction followed by synthesis, properties and applications of individual hexacyanoferrate nanoparticles have been featured in this article. In addition, the characterization of aforesaid nanoparticles using instrumental techniques like SEM, TEM and XRD have also been discussed.

[1]  Arben Merkoçi,et al.  Nanochannel array device operating through Prussian blue nanoparticles for sensitive label-free immunodetection of a cancer biomarker. , 2015, Biosensors & bioelectronics.

[2]  Surachai Karnjanakom,et al.  Fabrication of nickel hexacyanoferrate film on carbon fibers by unipolar pulse electrodeposition method for electrochemically switched ion exchange application , 2014 .

[3]  Chuanping Feng,et al.  Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell. , 2014, Journal of hazardous materials.

[4]  P. Pal,et al.  Functionalization of electrochemically deposited chitosan films with alginate and Prussian blue for enhanced performance of microbial fuel cells , 2013 .

[5]  P. Pandey,et al.  Novel synthesis of super peroxidase mimetic polycrystalline mixed metal hexacyanoferrates nanoparticles dispersion. , 2013, The Analyst.

[6]  C. Brett,et al.  Glucose oxidase enzyme inhibition sensors for heavy metals at carbon film electrodes modified with cobalt or copper hexacyanoferrate , 2013 .

[7]  H. Heli,et al.  Cobalt hexacyanoferrate/graphene nanocomposite – Application for the electrocatalytic oxidation and amperometric determination of captopril , 2013 .

[8]  M. Giorgetti,et al.  Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi-technique approach. , 2012, Physical chemistry chemical physics : PCCP.

[9]  T. Kojima,et al.  Preparation of Monodisperse Cobalt(II) Hexacyanoferrate(III) Nanoparticles Using Cobalt Ions Released from a Citrate Complex , 2012 .

[10]  D. S. Chauhan,et al.  3-Glycidoxypropyltrimethoxysilane mediated in situ synthesis of noble metal nanoparticles: application to hydrogen peroxide sensing. , 2012, The Analyst.

[11]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[12]  S. Jain,et al.  Synthesis of Nickel Hexacyanoferrate Nanoparticles and Their Potential as Heterogeneous Catalysts for the Solvent-Free Oxidation of Benzyl Alcohol , 2011 .

[13]  Dipti Bharti,et al.  Synergistic Effect of Antifungal Activity of Medicinal Plants with Transition Metal Ferrocyanides , 2011 .

[14]  B. Mamba,et al.  Nitrite Electrochemical Sensor Based on Prussian Blue /Single-Walled Carbon Nanotubes Modified Pyrolytic Graphite Electrode , 2011, International Journal of Electrochemical Science.

[15]  Y. Ying,et al.  An amperometric sensor based on Prussian blue and poly(o-phenylenediamine) modified glassy carbon electrode for the determination of hydrogen peroxide in beverages. , 2011, Food chemistry.

[16]  J. Joseph,et al.  Selective deposition of zinc hexacyanoferrate on the metal impurity sites of a SWCNT/glassy carbon electrode , 2011 .

[17]  N. Sattarahmady,et al.  An electrocatalytic transducer for L-cysteine detection based on cobalt hexacyanoferrate nanoparticles with a core-shell structure. , 2011, Analytical biochemistry.

[18]  Aimin Tang,et al.  Synthesis, characterization and the electrocatalytic application of prussian blue/ titanate nanotubes nanocomposite , 2010 .

[19]  F. Shiba Preparation of monodisperse Prussian blue nanoparticles via reduction process with citric acid , 2010 .

[20]  M. Giorgetti,et al.  Electrocatalytic Performances of Pure and Mixed Hexacyanoferrates of Cu and Pd for the Reduction of Hydrogen Peroxide , 2010 .

[21]  M. Giorgetti,et al.  Improved performances of electrodes based on Cu2+-loaded copper hexacyanoferrate for hydrogen peroxide detection , 2010 .

[22]  Kenneth I. Ozoemena,et al.  Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (III) oxide nanoparticles platform , 2010 .

[23]  L. Gorton,et al.  Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode , 2010 .

[24]  A. Nasim,et al.  Transition metal complexes as potential therapeutic agents , 2010 .

[25]  M. Berrettoni,et al.  Synthesis and Characterization of Nanostructured Cobalt Hexacyanoferrate , 2010 .

[26]  N. Zhang,et al.  Fabrication of prussian blue/multi-walled carbon nanotubes modified electrode for electrochemical sensing of hydroxylamine , 2010 .

[27]  Fan Yang,et al.  Preparation of Prussian blue@Pt nanoparticles/carbon nanotubes composite material for efficient determination of H2O2 , 2009 .

[28]  G. Shi,et al.  A Simple and Sensitive Method for the Amperometric Detection of Trace Chromium(VI) Based on Prussian Blue Modified Glassy Carbon Electrode , 2009 .

[29]  X. Xia,et al.  Controllable Synthesis and Formation Mechanism Investigation of Prussian Blue Nanocrystals by Using the Polysaccharide Hydrolysis Method , 2009 .

[30]  A. Abbaspour,et al.  Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles-modified carbon ceramic electrode , 2009 .

[31]  X. Xia,et al.  Photosynthesis of 1D Prussian blue nanowires by using DNA templates. , 2009, Journal of nanoscience and nanotechnology.

[32]  Jae-Joon Lee,et al.  Electrochemical Sensors Based on Carbon Nanotubes , 2009, Sensors.

[33]  N. Minh,et al.  Synthesis and characterization of Co–Fe Prussian blue nanoparticles within MCM-41 , 2009 .

[34]  P. A. Fiorito,et al.  Copper hexacyanoferrate nanoparticles modified electrodes: A versatile tool for biosensors , 2008 .

[35]  G. Luo,et al.  Application of Carbon Nanotube Modified Electrode in Bioelectroanalysis , 2008 .

[36]  Jinghong Li,et al.  Fabrication and electrochemical study of monodisperse and size controlled Prussian blue nanoparticles protected by biocompatible polymer , 2008 .

[37]  Jinghong Li,et al.  "Green" synthesis of size controllable Prussian blue nanoparticles stabilized by soluble starch. , 2007, Journal of nanoscience and nanotechnology.

[38]  Yoshio Kobayashi,et al.  Temporal evolution of composition and crystal structure of cobalt hexacyanoferrate nano-polymers synthesized in reversed micelles. , 2007, Journal of colloid and interface science.

[39]  E. Reguera,et al.  An atypical coordination in hexacyanometallates : Structure and properties of hexagonal zinc phases , 2007 .

[40]  M. Tokumoto,et al.  Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues , 2007 .

[41]  Genban Sun,et al.  Preparation of prussian blue nanoparticles with single precursor , 2007 .

[42]  Jianrong Chen,et al.  Electrochemical characterization of Prussian Blue nanoparticles , 2007 .

[43]  P. A. Fiorito,et al.  Synthesis and characterization of copper hexacyanoferrate nanoparticles for building up long-term stability electrochromic electrodes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[44]  L. Nie,et al.  Improved electrochemical properties of prussian blue by multi-walled carbon nanotubes , 2007 .

[45]  A. Kilic,et al.  Synthesis, characterization and redox properties of macrocyclic Schiff base by reaction of 2,6-diaminopyridine and 1,3-bis(2-carboxyaldehyde phenoxy)propane and its CuII, NiII, PbII, CoIII and LaIII complexes , 2007 .

[46]  K. Dunbar,et al.  Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives , 2007 .

[47]  R. Yu,et al.  Amperometric determination of bovine insulin based on synergic action of carbon nanotubes and cobalt hexacyanoferrate nanoparticles stabilized by EDTA , 2006, Analytical and bioanalytical chemistry.

[48]  Xiurong Yang,et al.  Preparation of cobalt hexacyanoferrate nanowires using carbon nanotubes as templates. , 2006, Talanta.

[49]  X. Xia,et al.  Mechanism investigation of Prussian blue electrochemically deposited from a solution containing single component of ferricyanide , 2006 .

[50]  Jian-hui Jiang,et al.  Carbon nanotube/cobalt hexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors. , 2006, Biosensors & bioelectronics.

[51]  M. Berrettoni,et al.  Cobalt hexacyanoferrate in PAMAM doped silica matrix. 2. Structural and electronic characterization , 2005 .

[52]  Zhong Lin Wang,et al.  Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3: Large-Scale Synthesis, Formation Mechanism, and Properties. , 2005 .

[53]  M. Berrettoni,et al.  Cobalt hexacyanoferrate in Pamam doped silica matrix. 1. Solid state electrochemistry and thermochromism , 2005 .

[54]  Shen-ming Chen,et al.  Preparation and characterization of ruthenium oxide/hexacyanoferrate and ruthenium hexacyanoferrate mixed films and their electrocatalytic properties , 2005 .

[55]  Changwen Hu,et al.  Shape-controlled synthesis of Prussian blue analogue Co3[Co(CN)6]2 nanocrystals. , 2005, Chemical communications.

[56]  J. Long,et al.  Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). , 2005, Journal of the American Chemical Society.

[57]  Shi Li-hong,et al.  Molecule‐Based Cobalt Hexacyanoferrate Nanoparticle: Synthesis, Characterization, and Its Electrochemical Properties , 2005 .

[58]  P. A. Fiorito,et al.  Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices. , 2005, Chemical communications.

[59]  A. Hauser,et al.  Crystalline, mixed-valence manganese analogue of prussian blue: magnetic, spectroscopic, X-ray and neutron diffraction studies. , 2004, Journal of the American Chemical Society.

[60]  Kosmas Prassides,et al.  Zero thermal expansion in a Prussian Blue analogue. , 2004, Journal of the American Chemical Society.

[61]  T. Uemura,et al.  Size and surface effects of prussian blue nanoparticles protected by organic polymers. , 2004, Inorganic chemistry.

[62]  A. Abbaspour,et al.  Electrocatalytic oxidation of guanine and DNA on a carbon paste electrode modified by cobalt hexacyanoferrate films. , 2004, Analytical chemistry.

[63]  V. Varadan,et al.  Chemical functionalization of carbon nanotubes with 3-methacryloxypropyltrimethoxysilane (3-MPTS) , 2004 .

[64]  L. Gorton,et al.  Prussian blue modified glassy carbon electrodes-study on operational stability and its application as a sucrose biosensor. , 2004, Talanta.

[65]  M. Kurihara,et al.  Synthesis and isolation of cobalt hexacyanoferrate/chromate metal coordination nanopolymers stabilized by alkylamino ligand with metal elemental control. , 2004, Journal of the American Chemical Society.

[66]  A. Khanchi,et al.  Exchange properties of cyanide complexes , 2003 .

[67]  A. Eftekhari Deposition of stable electroactive films of polynuclear cyanides onto silicon surface , 2003 .

[68]  K. Rajeshwar,et al.  Metal Hexacyanoferrates: Electrosynthesis, in Situ Characterization, and Applications , 2003 .

[69]  A. Stiegman,et al.  Transparent, Superparamagnetic KCo[FeIII(CN)6]–Silica Nanocomposites with Tunable Photomagnetism , 2003 .

[70]  T. Uemura,et al.  Prussian blue nanoparticles protected by poly(vinylpyrrolidone). , 2003, Journal of the American Chemical Society.

[71]  Osamu Sato,et al.  Control of the Magnetic and Optical Properties in Molecular Compounds by Electrochemical, Photochemical and Chemical Methods , 2003 .

[72]  A. Eftekhari Electrochemical behavior and electrocatalytic activity of a zinc hexacyanoferrate film directly modified electrode , 2002 .

[73]  E. Reguera,et al.  Evaluation of cadmium hexacianoferrate(III) as a microporous material , 2002 .

[74]  Xingguo Chen,et al.  Fabrication, Structure, and Magnetic Properties of Highly Ordered Prussian Blue Nanowire Arrays , 2002 .

[75]  C. Vidal-madjar,et al.  Sorption of cesium on copper hexacyanoferrate/polymer/silica composites in batch and dynamic conditions , 2002 .

[76]  K. Rajeshwar,et al.  Cobalt hexacyanoferrate: Compound stoichiometry, infrared spectroelectrochemistry, and photoinduced electron transfer , 2002 .

[77]  S. Mann,et al.  Molecule-Based Magnetic Nanoparticles: Synthesis of Cobalt Hexacyanoferrate, Cobalt Pentacyanonitrosylferrate, and Chromium Hexacyanochromate Coordination Polymers in Water-in-Oil Microemulsions , 2002 .

[78]  R. Koncki Chemical Sensors and Biosensors Based on Prussian Blues , 2002 .

[79]  F. Varret,et al.  Photoinduced ferrimagnetic systems in Prussian blue analogues C(I)xCo4[Fe(CN)6]y (C(I) = alkali cation). 3. Control of the photo- and thermally induced electron transfer by the [Fe(CN)6] vacancies in cesium derivatives. , 2001, Journal of the American Chemical Society.

[80]  M. Jayalakshmi,et al.  Performance characteristics of zinc hexacyanoferrate/Prussian blue and copper hexacyanoferrate/Prussian blue solid state secondary cells , 2000 .

[81]  C. Cai,et al.  Electrocatalytic activity of a cobalt hexacyanoferrate modified glassy carbon electrode toward ascorbic acid oxidation , 2000 .

[82]  Mei Li,et al.  Synthesis of Prussian Blue Nanoparticles and Nanocrystal Superlattices in Reverse Microemulsions , 2000 .

[83]  J. Kováč,et al.  Magnetic properties of uranium ferrocyanides and ferricyanides , 2000 .

[84]  L. Gorton,et al.  Amperometric biosensor for glutamate using prussian blue-based "artificial peroxidase" as a transducer for hydrogen peroxide. , 2000, Analytical chemistry.

[85]  U. Schröder,et al.  Solid state electrochemistry, X-ray powder diffraction, magnetic susceptibility, electron spin resonance, Mössbauer and diffuse reflectance spectroscopy of mixed iron(III)-cadmium(II) hexacyanoferrates , 1999 .

[86]  A. Malinauskas,et al.  Operational stability of amperometric hydrogen peroxide sensors, based on ferrous and copper hexacyanoferrates , 1999 .

[87]  F. Scholz,et al.  A Comparative Study of the Electrocatalytic Activities of Some Metal Hexacyanoferrates for the Oxidation of Hydrazine , 1999 .

[88]  W. Shih,et al.  Chromium hexacyanoferrate based glucose biosensor , 1999 .

[89]  A. Fujishima,et al.  DESIGN AND PREPARATION OF A NOVEL MAGNET EXHIBITING TWO COMPENSATION TEMPERATURES BASED ON MOLECULAR FIELD THEORY , 1999 .

[90]  Shen-ming Chen Characterization and electrocatalytic properties of cobalt hexacyanoferrate films , 1998 .

[91]  F. M. Mekhail,et al.  Chemical precipitation of cesium from waste solutions with iron(II)hexacyanocobaltate(III) and triphenylcyanoborate , 1998 .

[92]  A. Malinauskas,et al.  Electrocatalytic reactions of hydrogen peroxide at carbon paste electrodes modified by some metal hexacyanoferrates , 1998 .

[93]  M. Berrettoni,et al.  Electrochemical Charging, Countercation Accommodation, and Spectrochemical Identity of Microcrystalline Solid Cobalt Hexacyanoferrate , 1998 .

[94]  S. M. Golabi,et al.  Electrocatalytic oxidation of hydrazine at cobalt hexacyanoferrate- modified glassy carbon, Pt and Au electrodes , 1998 .

[95]  G. Rao,et al.  Modification of carbon electrodes with zinc hexacyanoferrate , 1997 .

[96]  M. Lin,et al.  Determination of hydrogen peroxide by utilizing a cobalt(II)hexacyanoferrate‐modified glassy carbon electrode as a chemical sensor , 1997 .

[97]  H. Kahlert,et al.  A Prussian blue-based reactive electrode (reactrode) for the determination of thallium ions , 1996, Analytical and bioanalytical chemistry.

[98]  E. Grabner,et al.  Electrocatalytic oxidation of hydrazine at a Prussian Blue-modified glassy carbon electrode , 1996 .

[99]  K. Hashimoto,et al.  Electrochemically Tunable Magnetic Phase Transition in a High-Tc Chromium Cyanide Thin Film , 1996, Science.

[100]  M. Verdaguer,et al.  A room-temperature organometallic magnet based on Prussian blue , 1995, Nature.

[101]  M. Berrettoni,et al.  Electrolyte-cation-dependent coloring, electrochromism and thermochromism of cobalt(II) hexacyanoferrate(III, II) films , 1995 .

[102]  A. Karyakin,et al.  Prussian Blue-Based First-Generation Biosensor. A Sensitive Amperometric Electrode for Glucose , 1995 .

[103]  Shaojun Dong,et al.  Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codeposition , 1995 .

[104]  A. Karyakin,et al.  A High-Sensitive Glucose Amperometric Biosensor Based on Prussian Blue Modified Electrodes , 1994 .

[105]  Archana Sharma,et al.  Role of metal ferrocyanides in chemical evolution , 1994, Origins of life and evolution of the biosphere.

[106]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[107]  G. Rao,et al.  A simple and novel method of preparing thin surface films of electrochronic Ni(OH)2 NiOOH , 1991 .

[108]  E. Wang,et al.  Liquid chromatography with electrocatalytic detection of cysteine, N-acetylcysteine and glutathione by a prussian blue film-modified electrode , 1991 .

[109]  R. Baldwin,et al.  Evaluation of electrodes coated with metal hexacyanoferrate as amperometric sensors for nonelectroactive cations in flow systems , 1990 .

[110]  R. Baldwin,et al.  Amperometric detection of nonelectroactive cations in flow systems at a cupric hexacyanoferrate electrode , 1989 .

[111]  Mark R. Deakin,et al.  Prussian Blue coated quartz crystal microbalance as a detector for electroinactive cations in aqueous solution , 1989 .

[112]  T. Samanta,et al.  Studies on the membrane potentials of a new microporous membrane in the presence of alkali chlorides with and without control of pores using precipitates of potassium salts , 1988 .

[113]  P. Nielsen,et al.  In vitro Study of 137Cs Sorption by Hexacyanoferrates(II) , 1987 .

[114]  R. Stella,et al.  Characterization of copper hexacyanoferrate(II) and (III) with reference to their use as cesium adsorbers , 1986 .

[115]  I. Uchida,et al.  Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues , 1986 .

[116]  V. Neff Some Performance Characteristics of a Prussian Blue Battery , 1985 .

[117]  Kingo Itaya,et al.  Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes , 1982 .

[118]  K. W. Hipps,et al.  A tunneling spectroscopy study of the adsorption of ferrocyanide from water solution by Al2O3 , 1979 .

[119]  Vernon D. Neff,et al.  Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue , 1978 .

[120]  P. Kissinger Amperometric and (bulometric Detectors for High-Performance Liquid Chromatography , 1977 .

[121]  Masayoshi Obashi,et al.  X-Ray Co K Edges of [Co(CN)6]3-, [Co(NO2)6]3- and [Co(NCS)4]2- Complex Ions , 1977 .

[122]  W. O. Milligan,et al.  SECTION OF CHEMICAL SCIENCES: THE STRUCTURE AND MORPHOLOGY OF CUPRIC FERROCYANIDE GELS* , 1969 .

[123]  H. Gray,et al.  Electronic structures of hexacyanometalate complexes , 1968 .

[124]  G. Navon,et al.  Study of Some Cyano-Metal Complexes by Nuclear Magnetic Resonance. II. Kinetics of Electron Transfer between Ferri- and Ferrocyanide Ions , 1965 .

[125]  V. Freise Zur Permselektivität und Semipermeabilität der Kupferferrocyanidmembran , 1958 .

[126]  F. D. Miles,et al.  Structures and Formulæ of the Prussian Blues and Related Compounds , 1936, Nature.

[127]  Mukesh Kumar,et al.  Use of Nickel Hexacyanoferrate(II) Semiconductor in Photocatalytic Degradation of Neutral Red Dye , 2013 .

[128]  Nengqin Jia,et al.  Electrochemical sensing based on graphene oxide/Prussian blue hybrid film modified electrode , 2011 .

[129]  S. Berchmans,et al.  Electrochemical behaviour of metal hexacyanoferrate converted to metal hydroxide films immobilized on indium tin oxide electrodes—Catalytic ability towards alcohol oxidation in alkaline medium , 2011 .

[130]  Changwen Hu,et al.  Sonochemical Synthesis of Prussian Blue Nanocubes from a Single-Source Precursor , 2006 .

[131]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[132]  A. Shabana,et al.  Electrical transport as a function of temperature in hexacyanoferrate complexes , 2003 .

[133]  W. Jin,et al.  Self-assembled Films of Prussian Blue and Analogues: Optical and Electrochemical Properties and Application as Ion-Sieving Membranes , 2003 .

[134]  R. Singh,et al.  Fertility Inhibitor Heterobimetallic Complexes of Platinum(II) and Palladium(II): Synthetic, Spectroscopic and Antimicrobial Aspects , 2000, Metal-based drugs.

[135]  H. Mimura,et al.  Selective Removal of Cesium from Sodium Nitrate Solutions by Potassium Nickel Hexacyanoferrate-Loaded Chabazites , 1999 .

[136]  M. Lin,et al.  Chromium(III) hexacyanoferrate(II)-based chemical sensor for the cathodic determination of hydrogen peroxide , 1998 .

[137]  A. Turner,et al.  Novel hexacyanoferrate(III) modified graphite disc electrodes and their application in enzyme electrodes—Part I , 1997 .

[138]  J C Pickup,et al.  Novel hexacyanoferrate (III)-modified carbon electrodes: application in miniaturized biosensors with potential for in vivo glucose sensing. , 1996, Biosensors & bioelectronics.

[139]  Kamaluddin,et al.  Adsorption of Adenine, Adenosine, and Adenosine Nucleotides on Nickel(II) Hexacyanoferrate(II) , 1996 .

[140]  E. Reguera,et al.  Synthesis and characterization of two complexes of glycine with lanthanum hexacyanoferrate(III) and hexacyanocobaltate(III) , 1996 .

[141]  M. Berrettoni,et al.  Countercation‐Sensitive Electrochromism of Cobalt Hexacyanoferrate Films , 1996 .

[142]  E. Wang,et al.  Electrocatalytic oxidation and amperometric determination of sulfhydryl compounds at a copper hexacyanoferrate film glassy carbon electrode in liquid chromatography , 1994 .

[143]  A. Turner,et al.  Glucose oxidase: an ideal enzyme , 1992 .

[144]  Z. Xing-yao The Electrocatalytic Oxidation of Ascorbic Acid on Nickel Hexacyanoferrate Film Modified Electrode , 1992 .

[145]  B. Teicher,et al.  Some complexes of cobalt(III) and iron(III) are radiosensitizers of hypoxic EMT6 cells. , 1987, Radiation research.

[146]  Kingo Itaya,et al.  Prussian‐blue‐modified electrodes: An application for a stable electrochromic display device , 1982 .

[147]  Satish Kumar,et al.  Ion-exchange properties of chromium ferrocyanide , 1976 .

[148]  A. G. Sharpe The chemistry of cyano complexes of the transition metals , 1976 .

[149]  V. V. Vol’khin,et al.  Structure of a mixed copper ferrocyanide and products of molecular sorption corresponding to it , 1971 .