Metal Oxide Nanoparticles: Size-Dependence of Quantum-Mechanical Properties

Most of physicochemical properties of nanoparticles alter with their varying size. Therefore, understanding the size-property relationships is essential to design nanoparticles characterized by desired features. We have studied those relationships based on a series of 6 representative metal oxides' molecular clusters with diameters ranging from 5 A to 50 A. We investigated effects of the variation in the clusters' size on values of the selected molecular (quantum-mechanical) parameters, that could be consider as potential nanodescriptors for QSAR/QSPR studies. We noticed that the studied parameters change according to two main schemes: (i) increase/decrease non-linearly till it reaches a given value (saturation point) and (ii) increase/decrease linearly with size of a nanoparticle. Our results show that the saturation effect for some molecular properties of nanometer-sized metal oxides can be reached even in clusters containing dozens of atoms. Calculations based on small clusters representing smaller fragments of a nanoparticle at semi- empirical PM6 level of the quantum-mechanical theory can be efficiently used for investigation and prediction of the properties of nanometer-scale metal oxides; they are not computationally demanding. We believe that the molecular properties calculated this way would be utilized in future as structural descriptors for quantitative modeling of the relationships between structure and activity of nanomaterials (Nano-QSAR).

[1]  Jerzy Leszczynski,et al.  Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. , 2011, Nature nanotechnology.

[2]  W. Potzel,et al.  X-Ray Diffractometer for High Pressure and Low Temperatures , 1991 .

[3]  Lai‐Sheng Wang,et al.  Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO(2))(n)(-) (n = 1-10) using photoelectron spectroscopy. , 2007, Journal of the American Chemical Society.

[4]  Zheng-Wang Qu,et al.  Theoretical study of the electronic structure and stability of titanium dioxide clusters (TiO2)n with n = 1-9. , 2006, The journal of physical chemistry. B.

[5]  H. Saalfeld Strukturuntersuchungen im System Al2O3—Cr2O3 , 1964 .

[6]  J. Gutzmer,et al.  Neutron Powder Diffraction Study of Mn-Bearing Hematite, α-Fe2-xMnxO3, in the Range 0 ≤ x ≤ 0.176. , 2005 .

[7]  N. Țigău,et al.  Structural, optical and electrical properties of Sb2O3 thin films with different thickness , 2006 .

[8]  Jerzy Leszczynski,et al.  Multiplicative SMILES-based optimal descriptors: QSPR modeling of fullerene C60 solubility in organic solvents , 2007 .

[9]  Jerzy Leszczynski,et al.  Predicting water solubility and octanol water partition coefficient for carbon nanotubes based on the chiral vector , 2007, Comput. Biol. Chem..

[10]  R. Hemley,et al.  Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami , 2008 .

[11]  Lalit M. Kukreja,et al.  Variable band gap ZnO nanostructures grown by pulsed laser deposition , 2004 .

[12]  J. Allen,et al.  Magnitude and origin of the band gap in NiO , 1984 .

[13]  T. Hahn,et al.  Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure , 1992 .

[14]  J. Leszczynski,et al.  A new approach to the characterization of nanomaterials : Predicting Young's modulus by correlation weighting of nanomaterials codes , 2006 .

[15]  G. D. Price,et al.  First-principles simulation of high-pressure polymorphs in MgAl2O4 , 2008 .

[16]  Jerzy Leszczynski,et al.  Improved model for fullerene C60 solubility in organic solvents based on quantum-chemical and topological descriptors , 2011 .

[17]  M. Spackman,et al.  Charge density analysis of two polymorphs of antimony(III) oxide. , 2004, Dalton transactions.

[18]  L. Karanović,et al.  Structural and electrical properties of the 2Bi2O3·3ZrO2 system , 2008 .

[19]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[20]  V. Murugesan,et al.  Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2 , 2003 .

[21]  M. J. Redman,et al.  Cobaltous Oxide with the Zinc Blende/Wurtzite-type Crystal Structure , 1962, Nature.

[22]  Puru Jena,et al.  Clusters: a bridge across the disciplines of physics and chemistry. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Grabis,et al.  Powder diffraction investigations of plasma sprayed zirconia , 1995, Journal of Materials Science.

[24]  T. Xia,et al.  Toxic Potential of Materials at the Nanolevel , 2006, Science.

[25]  A. Rubio-Ponce,et al.  First-principles study of anatase and rutile TiO 2 doped with Eu ions: A comparison of GGA and LDA + U calculations , 2008 .

[26]  Jerzy Leszczynski,et al.  Bionanoscience: Nano meets bio at the interface. , 2010, Nature nanotechnology.

[27]  S. Saitô,et al.  Crystal Structure of Ferromagnetic Nickel Oxide , 1956 .

[28]  J. Galy,et al.  Comparative Structural and Electrical Studies of V2O3 and V2—xNixO3 (0 < x < 0.75) Solid Solution , 2002 .

[29]  E. Herlinger Untersuchungen über die Kristallstruktur von Sesquioxyden und Verbindungen ABO3,. Von W. H. Zachariasen. Skrifter utgitt av Det Norske Videnskap‐Akademi i Oslo, I. Mat.‐Naturw. Klasse 1928, Nr. 4. Oslo, in Kommission bei J. Dybwad 1928. Kr. 12,— , 1929 .

[30]  R. Summitt,et al.  The ultraviolet absorption edge of stannic oxide (SnO2) , 1964 .

[31]  David R. Clarke,et al.  On the optical band gap of zinc oxide , 1998 .

[32]  T. Roisnel,et al.  Structural Studies of Tin-Doped Indium Oxide (ITO) and In4Sn3O12 , 1998 .

[33]  T. Puzyn,et al.  Toward the development of "nano-QSARs": advances and challenges. , 2009, Small.