Control of Vibrio vulnificus proliferation in the Baltic Sea through eutrophication and algal bloom management

[1]  A. Huq,et al.  Genomic diversity of Vibrio spp. and metagenomic analysis of pathogens in Florida Gulf coastal waters following Hurricane Ian , 2023, mBio.

[2]  R. Colwell,et al.  Environmental Factors Influencing Occurrence of Vibrio parahaemolyticus and Vibrio vulnificus , 2023, Applied and environmental microbiology.

[3]  S. Karpov,et al.  The new chytridiomycete Paradinomyces triforaminorum gen. et sp. nov. co-occurs with other parasitoids during a Kryptoperidinium foliaceum (Dinophyceae) bloom in the Baltic Sea. , 2022, Harmful algae.

[4]  S. Mikhail,et al.  Molecular taxonomical identification and phylogenetic relationships of some marine dominant algal species during red tide and harmful algal blooms along Egyptian coasts in the Alexandria region , 2022, Environmental Science and Pollution Research.

[5]  K. Flynn,et al.  Acquired Phototrophy and Its Implications for Bloom Dynamics of the Teleaulax-Mesodinium-Dinophysis-Complex , 2022, Frontiers in Marine Science.

[6]  Anders F. Andersson,et al.  Short‐ and long‐read metabarcoding of the eukaryotic rRNA operon: Evaluation of primers and comparison to shotgun metagenomics sequencing , 2021, Molecular ecology resources.

[7]  M. Christner,et al.  Heatwave-associated Vibrio infections in Germany, 2018 and 2019 , 2021, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[8]  G. Lindström,et al.  Climate Change in the Baltic Sea Region: A Summary , 2021, Earth System Dynamics.

[9]  H. Fickenscher,et al.  Nicht-Cholera-Vibrionen – derzeit noch seltene, aber wachsende Infektionsgefahr in Nord- und Ostsee , 2021, Der Internist.

[10]  P. Kujala,et al.  Natural Hazards and Extreme Events in the Baltic Sea region , 2021, Earth System Dynamics.

[11]  U. Hentschel,et al.  Lower Vibrio spp. abundances in Zostera marina leaf canopies suggest a novel ecosystem function for temperate seagrass beds , 2021, Marine Biology.

[12]  Ø. Moestrup,et al.  Dimorphism in cryptophytes—The case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications , 2020, Science Advances.

[13]  B. Kreikemeyer,et al.  Impact of coastal aquaculture operation systems in Hainan island (China) on the relative abundance and community structure of Vibrio in adjacent coastal systems , 2020 .

[14]  Romdhane Rekaya,et al.  Adapterama I: universal stubs and primers for 384 unique dual-indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext) , 2019, PeerJ.

[15]  R. Ramasubburayan,et al.  Screening, partial purification of antivibriosis metabolite sterol-glycosides from Rhodococcus sp. against aquaculture associated pathogens. , 2019, Microbial pathogenesis.

[16]  J. Bowman,et al.  Impacts of Zostera eelgrasses on microbial community structure in San Diego coastal waters , 2019, Elementa: Science of the Anthropocene.

[17]  D. Honda,et al.  Nutritional intake of Aplanochytrium (Labyrinthulea, Stramenopiles) from living diatoms revealed by culture experiments suggesting the new prey–predator interactions in the grazing food web of the marine ecosystem , 2019, PloS one.

[18]  Dong-Min Kim,et al.  Vibrio vulnificus infection: a persistent threat to public health , 2018, The Korean journal of internal medicine.

[19]  M. Doebeli,et al.  Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem , 2018, Microbiome.

[20]  U. Stingl,et al.  The Seagrass Holobiont and Its Microbiome , 2017, Microorganisms.

[21]  P. Sandifer,et al.  Temporal and Environmental Factors Driving Vibrio Vulnificus and V. Parahaemolyticus Populations and Their Associations With Harmful Algal Blooms in South Carolina Detention Ponds and Receiving Tidal Creeks , 2017, GeoHealth.

[22]  F. Sönnichsen,et al.  Identification of rosmarinic acid and sulfated flavonoids as inhibitors of microfouling on the surface of eelgrass Zostera marina , 2017, Biofouling.

[23]  J. Rocklöv,et al.  Environmental Suitability of Vibrio Infections in a Warming Climate: An Early Warning System , 2017, Environmental health perspectives.

[24]  P. Larsson,et al.  Remediation of a Eutrophic Bay in the Baltic Sea. , 2017, Environmental science & technology.

[25]  E. Fiorenza,et al.  Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates , 2017, Science.

[26]  Hao Chen,et al.  flowAI: automatic and interactive anomaly discerning tools for flow cytometry data , 2016, Bioinform..

[27]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[28]  A. Godhe,et al.  Spatio-Temporal Interdependence of Bacteria and Phytoplankton during a Baltic Sea Spring Bloom , 2016, Front. Microbiol..

[29]  G. Muyzer,et al.  Rhizosphere Microbiomes of European Seagrasses Are Selected by the Plant, But Are Not Species Specific , 2016, Front. Microbiol..

[30]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[31]  K. Coyne,et al.  Community-Level and Species-Specific Associations between Phytoplankton and Particle-Associated Vibrio Species in Delaware's Inland Bays , 2015, Applied and Environmental Microbiology.

[32]  S. Balzano,et al.  Protist diversity along a salinity gradient in a coastal lagoon , 2015 .

[33]  Robert Hein,et al.  rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development , 2014, Nucleic Acids Res..

[34]  J. L. Pérez-Lloréns,et al.  Interactions between Seagrass Complexity, Hydrodynamic Flow and Biomixing Alter Food Availability for Associated Filter-Feeding Organisms , 2014, PloS one.

[35]  S. A. Boers,et al.  Vibrio vulnificus outbreaks in Dutch eel farms since 1996: strain diversity and impact. , 2014, Diseases of aquatic organisms.

[36]  P. Gajer,et al.  An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform , 2014, Microbiome.

[37]  Bertrand Michel,et al.  Correlation and variable importance in random forests , 2013, Statistics and Computing.

[38]  J. Triñanes,et al.  Emerging Vibrio risk at high latitudes in response to ocean warming , 2013 .

[39]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[40]  Stéphane Audic,et al.  The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy , 2012, Nucleic Acids Res..

[41]  Arlene Chen,et al.  Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the Coastal and Estuarine Waters of Louisiana, Maryland, Mississippi, and Washington (United States) , 2012, Applied and Environmental Microbiology.

[42]  R. Colwell,et al.  Temporal and Spatial Variability in the Distribution of Vibrio vulnificus in the Chesapeake Bay: A Hindcast Study , 2011, EcoHealth.

[43]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[44]  C. Humborg,et al.  History and scenarios of future development of Baltic Sea eutrophication , 2011 .

[45]  Emily S. Charlson,et al.  Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications , 2011, Nature Biotechnology.

[46]  Anders F. Andersson,et al.  Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea , 2011, The ISME Journal.

[47]  S. Kirchner,et al.  Pentaplexed Quantitative Real-Time PCR Assay for the Simultaneous Detection and Quantification of Botulinum Neurotoxin-Producing Clostridia in Food and Clinical Samples , 2010, Applied and Environmental Microbiology.

[48]  C. Baker-Austin,et al.  Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective. , 2010, Environmental microbiology reports.

[49]  R. Feistel,et al.  Vertical mixing in the Baltic Sea and consequences for eutrophication - A review , 2009 .

[50]  Raphael Gottardo,et al.  flowClust: a Bioconductor package for automated gating of flow cytometry data , 2009, BMC Bioinformatics.

[51]  F. Yildiz,et al.  Vibrio biofilms: so much the same yet so different. , 2009, Trends in microbiology.

[52]  Max Kuhn,et al.  Building Predictive Models in R Using the caret Package , 2008 .

[53]  J. Oliver,et al.  The ecology of Vibrio vulnificus, Vibrio cholerae, and Vibrio parahaemolyticus in North Carolina Estuaries , 2008, The Journal of Microbiology.

[54]  Sébastien Lê,et al.  FactoMineR: An R Package for Multivariate Analysis , 2008 .

[55]  R. Noble,et al.  Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary. , 2007 .

[56]  A. Eiler,et al.  Growth response of Vibrio cholerae and other Vibrio spp. to cyanobacterial dissolved organic matter and temperature in brackish water. , 2007, FEMS microbiology ecology.

[57]  A. Eiler,et al.  Environmental Influences on Vibrio Populations in Northern Temperate and Boreal Coastal Waters (Baltic and Skagerrak Seas) , 2006, Applied and Environmental Microbiology.

[58]  K. Alpers,et al.  Vibrio vulnificus wound infections after contact with the Baltic Sea, Germany. , 2006, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[59]  D. McDougald,et al.  The role of quorum sensing and the effect of environmental conditions on biofilm formation by strains of Vibrio vulnificus , 2006, Biofouling.

[60]  D. McDougald,et al.  Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Friesecke,et al.  Two cases of severe sepsis due to Vibrio vulnificus wound infection acquired in the Baltic Sea , 2004, European Journal of Clinical Microbiology and Infectious Diseases.

[62]  A. Bej,et al.  Multiplex PCR detection of clinical and environmental strains of Vibrio vulnificus in shellfish. , 2004, Canadian journal of microbiology.

[63]  M. Polz,et al.  Effects of Temperature and Salinity on Vibrio vulnificus Population Dynamics as Assessed by Quantitative PCR , 2004, Applied and Environmental Microbiology.

[64]  B. Peterson,et al.  Positive interactions between suspension-feeding bivalves and seagrass-a facultative mutualism , 2001 .

[65]  Josep M. Gasol,et al.  Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities , 2000 .

[66]  J. Oliver,et al.  Pathogenesis of Vibrio vulnificus. , 1999, FEMS microbiology letters.

[67]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[68]  Worcester Se,et al.  Effects of eelgrass beds on advection and turbulent mixing in low current and low shoot density environments , 1995 .

[69]  S. Nixon Coastal marine eutrophication: A definition, social causes, and future concerns , 1995 .

[70]  S. Rippey,et al.  Infectious diseases associated with molluscan shellfish consumption , 1994, Clinical Microbiology Reviews.

[71]  P. Jumars,et al.  Flow Environments of Aquatic Benthos , 1984 .

[72]  I. Wallentinus Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies , 1984 .

[73]  J. Fisher,et al.  Influence of the seagrass, Zostera marina L., on current flow☆ , 1982 .

[74]  Daniel A. Lemley,et al.  Bacterial community dynamics during a harmful algal bloom of Heterosigma akashiwo , 2021 .

[75]  J. Köster,et al.  Snakemake - a scalable bioinformatics workflow engine , 2018, Bioinform..

[76]  J. Triñanes,et al.  Non-Cholera Vibrios: The Microbial Barometer of Climate Change. , 2017, Trends in microbiology.

[77]  Birgitta König-Ries,et al.  Towards an Integrated Biodiversity and Ecological Research Data Management and Archiving Platform: The German Federation for the Curation of Biological Data (GFBio) , 2014, GI-Jahrestagung.

[78]  R. Pesch,et al.  Eutrophication assessment of the Baltic Sea Protected Areas by available data and GIS technologies. , 2011, Marine pollution bulletin.

[79]  C. Humborg,et al.  Second Assessment of Climate Change for the Baltic Sea Basin , 2008 .

[80]  Steven Smriga,et al.  Trophic regulation of Vibrio cholerae in coastal marine waters. , 2006, Environmental microbiology.

[81]  A. Wright,et al.  Expression of Vibrio vulnificus Capsular Polysaccharide Inhibits Biofilm Formation , 2004 .

[82]  James R. Cole,et al.  rrndb: the Ribosomal RNA Operon Copy Number Database , 2001, Nucleic Acids Res..

[83]  L. Breiman Random Forests , 2001, Machine Learning.

[84]  M. Ehrhardt,et al.  Methods of Seawater Analysis (3rd Edition) , 1999 .

[85]  H. A. Thomsen,et al.  New observations on the heterotrophic protist genus Thaumatomastix (Thaumatomastigaceae, Protista incerta sedis), with particular emphasis on material from the Baltic Sea , 1993 .