Évaluation morphologique pour la traduction automatique : adaptation au français (Morphological Evaluation for Machine Translation : Adaptation to French)

Morphological Evaluation for Machine Translation : Adaptation to French While the state of the art in machine translation has recently changed, it is regularly acknowledged that automatic metrics do not provide enough insights to fully measure the observed qualitative leap. This paper proposes an evaluation protocol for translation from English into French specifically focused on the morphological competence of a system with respect to various grammatical phenomena. MOTS-CLÉS : Traduction automatique, évaluation de la TA, morphologie.

[1]  Kenneth Heafield,et al.  KenLM: Faster and Smaller Language Model Queries , 2011, WMT@EMNLP.

[2]  Hans Uszkoreit,et al.  Using a new analytic measure for the annotation and analysis of MT errors on real data , 2014, EAMT.

[3]  Philipp Koehn,et al.  Europarl: A Parallel Corpus for Statistical Machine Translation , 2005, MTSUMMIT.

[4]  Emmanuel Dupoux,et al.  Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies , 2016, TACL.

[5]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[6]  Hermann Ney,et al.  Error Analysis of Statistical Machine Translation Output , 2006, LREC.

[7]  Yonatan Belinkov,et al.  What do Neural Machine Translation Models Learn about Morphology? , 2017, ACL.

[8]  Rico Sennrich,et al.  Improving Neural Machine Translation Models with Monolingual Data , 2015, ACL.

[9]  François Yvon,et al.  Evaluating the morphological competence of Machine Translation Systems , 2017, WMT.

[10]  Margaret King,et al.  Using Test Suites in Evaluation of Machine Translation Systems , 1990, COLING.

[11]  Rico Sennrich,et al.  Neural Machine Translation of Rare Words with Subword Units , 2015, ACL.

[12]  Benoît Sagot,et al.  The Lefff, a Freely Available and Large-coverage Morphological and Syntactic Lexicon for French , 2010, LREC.

[13]  Arianna Bisazza,et al.  Neural versus Phrase-Based Machine Translation Quality: a Case Study , 2016, EMNLP.

[14]  Hermann Ney,et al.  Towards Automatic Error Analysis of Machine Translation Output , 2011, CL.

[15]  Rico Sennrich,et al.  How Grammatical is Character-level Neural Machine Translation? Assessing MT Quality with Contrastive Translation Pairs , 2016, EACL.

[16]  Miles Osborne,et al.  Statistical Machine Translation , 2010, Encyclopedia of Machine Learning and Data Mining.

[17]  Antonio Toral,et al.  Fine-Grained Human Evaluation of Neural Versus Phrase-Based Machine Translation , 2017, Prague Bull. Math. Linguistics.

[18]  Chris Callison-Burch,et al.  Open Source Toolkit for Statistical Machine Translation: Factored Translation Models and Lattice Decoding , 2006 .

[19]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[20]  Antonio Toral,et al.  A Multifaceted Evaluation of Neural versus Phrase-Based Machine Translation for 9 Language Directions , 2017, EACL.

[21]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[22]  Pierre Isabelle,et al.  A Challenge Set Approach to Evaluating Machine Translation , 2017, EMNLP.

[23]  Adam Lopez,et al.  From Characters to Words to in Between: Do We Capture Morphology? , 2017, ACL.

[24]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[25]  Josep Maria Crego,et al.  Neural Machine Translation from Simplified Translations , 2016, ArXiv.

[26]  Rico Sennrich,et al.  Nematus: a Toolkit for Neural Machine Translation , 2017, EACL.

[27]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.