High Growth Rate of Erbium Oxide Thin Films in Atomic Layer Deposition from (CpMe)3Er and Water Precursors

Organometallic tris(methylcyclopentadienyl)erbium and water were successfully exploited as precursors for the atomic layer deposition (ALD) of Er 2 O 3 thin films. Deposition studies were carried out in the temperature range 175-450 °C, where Si(100) and soda-lime glass were used as substrates. ALD-type growth mechanism could be verified at relatively low deposition temperatures of 250 °C and 300 °C, where a high growth rate (1.5 A per cycle) for an ALD process was obtained. The deposited Er 2 O 3 films were smooth and very uniform, and contained only low concentrations of carbon and hydrogen as impurities. The films were crystalline with the (111) orientation of the cubic phase dominating. The effective permittivity of the Er 2 O 3 /native SiO 2 insulator stack was approximately 10.

[1]  T. Sajavaara,et al.  Analysis of ALD-processed thin films by ion-beam techniques , 2005, Analytical and bioanalytical chemistry.

[2]  M. Putkonen,et al.  Neodymium oxide and neodymium aluminate thin films by atomic layer deposition , 2005 .

[3]  M. Putkonen,et al.  A comparative study on lanthanide oxide thin films grown by atomic layer deposition , 2005 .

[4]  G. Tallarida,et al.  Atomic-layer deposition of Lu2O3 , 2004 .

[5]  Lauri Niinistö,et al.  Atomic layer deposition of rare earth oxides: erbium oxide thin films from β-diketonate and ozone precursors , 2004 .

[6]  M. Putkonen,et al.  Processing of Y2O3 Thin Films by Atomic Layer Deposition from Cyclopentadienyl-Type Compounds and Water as Precursors , 2004 .

[7]  Lauri Niinistö,et al.  Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials , 2004 .

[8]  G. Eisenstein,et al.  Structural and electrical properties of electron beam gun evaporated Er2O3 insulator thin films , 2004 .

[9]  K. Solehmainen,et al.  Erbium-doped waveguides fabricated with atomic layer deposition method , 2004, IEEE Photonics Technology Letters.

[10]  Mikko Ritala,et al.  Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.

[11]  M. Ritala,et al.  Rare-earth oxide thin films as gate oxides in MOSFET transistors , 2003 .

[12]  Eduardo Abramof,et al.  Characterization of erbium oxide sol–gel films and devices by grazing incidence X-ray reflectivity , 2002 .

[13]  M. Putkonen,et al.  Cerium dioxide buffer layers at low temperature by atomic layer deposition , 2002 .

[14]  G. Eisenstein,et al.  Structural properties and electrical characteristics of electron-beam gun evaporated erbium oxide films , 2002 .

[15]  E. Cartier,et al.  Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues , 2001 .

[16]  G. Eisenstein,et al.  Characteristics of electron-beam-gun-evaporated Er2O3 thin films as gate dielectrics for silicon , 2001 .

[17]  T. Sajavaara,et al.  Surface-Controlled Deposition of Sc2O3 Thin Films by Atomic Layer Epitaxy Using β-Diketonate and Organometallic Precursors , 2001 .

[18]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[19]  Lauri Niinistö,et al.  Formation and stability of lanthanum oxide thin films deposited from β-diketonate precursor , 2001 .

[20]  Tooru Katsumata,et al.  Interfacial reactions between thin rare-earth-metal oxide films and Si substrates , 2001 .

[21]  D. Xue,et al.  Dielectric constants of binary rare-earth compounds , 2000 .

[22]  Hong,et al.  Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation , 1999, Science.

[23]  M. Tiitta,et al.  Volatile Metal β‐Diketonates: ALE and CVD precursors for electroluminescent device thin films , 1997 .

[24]  J. Keinonen,et al.  Comparison of TOF-ERDA and nuclear resonance reaction techniques for range profile measurements of keV energy implants , 1996 .

[25]  D. Schlom,et al.  Thermodynamic stability of binary oxides in contact with silicon , 1996 .

[26]  J. P. Larpin,et al.  Characterization of thin solid films of rare earth oxides formed by the metallo-organic chemical vapour deposition technique, for high temperature corrosion applications , 1995 .

[27]  M. Utriainen,et al.  Growth of yttrium oxide thin films from β-diketonate precursor , 1994 .

[28]  M. Varela,et al.  Deposition of Er2O3 thin films on Si(100) by laser ablation , 1994 .

[29]  J. Larpin,et al.  Organometallic chemical vapor deposition of rare earth oxide thin films. Application for steel protection against high temperature oxidation , 1994 .

[30]  Markku Ylilammi,et al.  Optical determination of the film thicknesses in multilayer thin film structures , 1993 .

[31]  T. Kitagawa,et al.  Erbium-doped phosphosilicate glass waveguide amplifier fabricated by PECVD , 1993 .

[32]  M. Yagi,et al.  Preparation of lanthanide, thorium and uranium oxide films by chemical vapor deposition using β-diketone chelates , 1991 .

[33]  H. Suhr,et al.  Thin yttrium and rare earth oxide films produced by plasma enhanced CVD of novel organometallic π-complexes , 1990 .

[34]  H. Suhr,et al.  THIN LANTHANUM OXIDE AND RARE-EARTH OXIDE FILMS BY PECVD OF β-DIKETONATE CHELATE COMPLEXES , 1989 .

[35]  T. Marcinow,et al.  Rare earth oxide films: their preparation and optical properties. , 1981, Applied optics.

[36]  T. Sajavaara,et al.  Low-temperature ALE deposition of Y2O3 thin films from β-diketonate precursors , 2001 .

[37]  Pekka Soininen,et al.  Perfectly Conformal TiN and Al2O3 Films Deposited by Atomic Layer Deposition , 1999 .

[38]  Takashi Hori,et al.  Gate Dielectrics and MOS ULSIs , 1997 .

[39]  L. Niinistö,et al.  Deposition of Cerium Dioxide Thin Films on Silicon Substrates by Atomic Layer Epitaxy , 1993 .