G1 Hermite interpolation by PH cubics revisited

This paper deals with G^1 Hermite interpolation by the Tschirnhausen cubic. In Meek and Walton (1997a), the explicit formulas for finding an arc of Tschirnhausen cubic which interpolates given Hermite interpolation data were given. In this paper, we extend these results to more general input data and refine on the results presented in Meek and Walton (1997a). Furthermore, we present a thorough analysis of the number and the quality of the interpolants; particularly if they contain a loop or not.

[1]  Bert Jüttler,et al.  Hermite interpolation by Pythagorean hodograph curves of degree seven , 2001, Math. Comput..

[2]  Wei Lü,et al.  Rational parameterization of quadrics and their offsets , 1996, Computing.

[3]  Tony DeRose,et al.  A geometric characterization of parametric cubic curves , 1989, TOGS.

[4]  Carla Manni,et al.  Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics , 2005, Adv. Comput. Math..

[5]  Vito Vitrih,et al.  On interpolation by Planar cubic G2 pythagorean-hodograph spline curves , 2010, Math. Comput..

[6]  Helmut Pottmann,et al.  Rational curves and surfaces with rational offsets , 1995, Comput. Aided Geom. Des..

[7]  Takis Sakkalis,et al.  Pythagorean-hodograph space curves , 1994, Adv. Comput. Math..

[8]  Bohumír Bastl,et al.  PN surfaces and their convolutions with rational surfaces , 2008, Comput. Aided Geom. Des..

[9]  Helmut Pottmann,et al.  Pipe surfaces with rational spine curve are rational , 1996, Comput. Aided Geom. Des..

[10]  T. Sakkalis,et al.  Pythagorean hodographs , 1990 .

[11]  Zbynek Sír,et al.  Support Function of Pythagorean Hodograph Cubics and G1 Hermite Interpolation , 2010, GMP.

[12]  Rida T. Farouki,et al.  Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable , 2007, Geometry and Computing.

[13]  Helmut Pottmann,et al.  A Laguerre geometric approach to rational offsets , 1998, Comput. Aided Geom. Des..

[14]  D. Walton,et al.  Geometric Hermite interpolation with Tschirnhausen cubics , 1997 .

[15]  C. A. Neff,et al.  Hermite interpolation by Pythagorean hodograph quintics , 1995 .

[16]  Zbynek Sír,et al.  Hermite interpolation by hypocycloids and epicycloids with rational offsets , 2010, Comput. Aided Geom. Des..

[17]  Dereck S. Meek,et al.  Hermite interpolation with Tschirnhausen cubic spirals , 1997, Comput. Aided Geom. Des..

[18]  Bert Jüttler,et al.  Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling , 1999, Comput. Aided Des..

[19]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.