Low-resistance orthorhombic MoO3-x thin film derived by two-step annealing

[1]  Bruce Dunn,et al.  Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. , 2017, Nature materials.

[2]  M. Döbeli,et al.  Ultrahigh Thermoelectric Performance in SrNb0.2Ti0.8O3 Oxide Films at a Submicrometer-Scale Thickness , 2017 .

[3]  Robert T. Downs,et al.  The power of databases: The RRUFF project , 2016 .

[4]  Fengxian Xie,et al.  MoOx and V2Ox as hole and electron transport layers through functionalized intercalation in normal and inverted organic optoelectronic devices , 2015, Light: Science & Applications.

[5]  S. Sasa,et al.  Postgrowth annealing effects on structural, optical, and electrical properties of β-MoO3 films grown by molecular beam epitaxy , 2014, 2014 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK).

[6]  C. Battaglia,et al.  Hole selective MoOx contact for silicon solar cells. , 2014, Nano letters.

[7]  Brian E. McCandless,et al.  Characterization of reactively sputtered molybdenum oxide films for solar cell application , 2013 .

[8]  M. Strano,et al.  Enhanced Charge Carrier Mobility in Two‐Dimensional High Dielectric Molybdenum Oxide , 2013, Advanced materials.

[9]  K. Zaghib,et al.  Electrochemical properties of nanofibers α-MoO3 as cathode materials for Li batteries , 2012 .

[10]  W. Tang,et al.  Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies , 2012 .

[11]  A. Kahn,et al.  Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications , 2012, Advanced materials.

[12]  C. Sow,et al.  Ultrasensitive Phototransistor Based on K-Enriched MoO3 Single Nanowires , 2012 .

[13]  K. Lim,et al.  Towards a high efficiency amorphous silicon solar cell using molybdenum oxide as a window layer instead of conventional p-type amorphous silicon carbide , 2011 .

[14]  Xingzhong Zhao,et al.  Deposition temperature effect of RF magnetron sputtered molybdenum oxide films on the power conversion efficiency of bulk-heterojunction solar cells , 2011 .

[15]  Wolfgang Kowalsky,et al.  Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films , 2009 .

[16]  W. Wlodarski,et al.  Reverse biased Pt/nanostructured MoO3/SiC Schottky diode based hydrogen gas sensors , 2009 .

[17]  Po-Tsung Hsieh,et al.  Post-annealing effect upon optical properties of electron beam evaporated molybdenum oxide thin films , 2009 .

[18]  A. Szekeres,et al.  Structure and optical properties of CVD molybdenum oxide films for electrochromic application , 2002 .

[19]  S. I. Castañeda,et al.  X-ray photoelectron spectroscopy study of low-temperature molybdenum oxidation process , 1999 .

[20]  G. Schrader,et al.  Deposition of multiphase molybdate thin films by reactive sputtering , 1998 .

[21]  Jiannian Yao,et al.  Enhancement of Photochromism and Electrochromism in MoO3/Au and MoO3/Pt Thin Films , 1998 .

[22]  R. Ohyama,et al.  Physical properties of evaporated molybdenum oxide films , 1996 .

[23]  J. Lassègues,et al.  Infrared and Raman spectra of MoO 3 molybdenum trioxides and MoO 3 · xH 2O molybdenum trioxide hydrates , 1995 .

[24]  L. Martin,et al.  Structure and optical properties of MoO3 thin films prepared by chemical vapor deposition , 1988 .

[25]  J. Moulijn,et al.  Temperature-programmed sulfiding of Re2O7/Al2O3 catalysts , 1986 .

[26]  J. Moulijn,et al.  Temperature-programmed sulfiding of MoO3/Al2O3 catalysts , 1985 .

[27]  P. Mitchell Oxo-species of molybdenum-(V) and -(VI) , 1966 .