Wave Signatures in Total Electron Content Variations: Filtering Problems

[1]  E. L. Afraimovich,et al.  GPS global detection of the ionospheric response to solar flares , 2000, physics/0007026.

[2]  Y. Yasyukevich,et al.  Can we detect X/M/C-class solar flares from global navigation satellite system data? , 2019, Results in Physics.

[3]  Vladimir Truhlik,et al.  The International Reference Ionosphere 2012 – a model of international collaboration , 2014 .

[4]  Heng Yang,et al.  Multi‐TID detection and characterization in a dense Global Navigation Satellite System receiver network , 2017 .

[5]  Michael Mendillo,et al.  Storms in the ionosphere: Patterns and processes for total electron content , 2006 .

[6]  Md. Rafiqul Islam,et al.  Design and Implementation of Butterworth, Chebyshev-I and Elliptic Filter for Speech Signal Analysis. , 2020, 2002.03130.

[7]  A. Komjathy,et al.  Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration , 2017, Scientific Reports.

[8]  E. L. Afraimovich,et al.  The shock-acoustic waves generated by earthquakes , 2001 .

[9]  Harald Uhlig,et al.  On Adjusting the Hodrick-Prescott Filter for the Frequency of Observations , 2002, Review of Economics and Statistics.

[10]  Eric Pottiaux,et al.  Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data , 2014 .

[11]  M. Hernández‐Pajares,et al.  GNSS measurement of EUV photons flux rate during strong and mid solar flares , 2012 .

[12]  Jan Laštovička,et al.  Solar activity impact on the Earth’s upper atmosphere , 2013 .

[13]  Yury V. Yasyukevich,et al.  SibNet — Siberian Global Navigation Satellite System Network: Current state , 2018, Solar-Terrestrial Physics.

[14]  E. Astafyeva,et al.  Effects of strong IMF B z southward events on the equatorial and mid-latitude ionosphere , 2009 .

[15]  B. Wilson,et al.  Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study , 2012, Earth, Planets and Space.

[16]  J. Ping,et al.  Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array , 2005 .

[17]  S. V. Voeykov,et al.  A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena , 2013 .

[18]  Richard E. Thomson Chapter 6 – Digital Filters , 2014 .

[19]  Erman Şentürk,et al.  A Comprehensive Analysis of Ionospheric Anomalies before the Mw7·1 Van Earthquake on 23 October 2011 , 2018, Journal of Navigation.

[20]  Yiyan Zhou,et al.  Ionospheric disturbances associated with the 2015 M7.8 Nepal earthquake , 2017 .

[21]  Todd E Humphreys,et al.  Modeling the Effects of Ionospheric Scintillation on GPS Carrier Phase Tracking , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[22]  M. Abdullah,et al.  Total Electron Content Observations by Dense Regional and Worldwide International Networks of GNSS , 2018, Journal of Disaster Research.

[23]  A. Komjathy,et al.  The 2009 Samoa and 2010 Chile tsunamis as observed in the ionosphere using GPS total electron content , 2011 .

[24]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[25]  Yury V. Yasyukevich,et al.  SIMuRG: System for Ionosphere Monitoring and Research from GNSS , 2020, GPS Solutions.