Programmation logique avec contraintes et ordonnancement

Combinatorial problems such as scheduling have been the target of many works in the field of Operations Research, and led to develop tree-search methods, whose efficiency strongly depends on an intelligent processing of the constraints that define the feasibility of the solutions. Although logic programming is a powerful and elegant support for the representation of such problems, classic imperative languages have been preferred for efficiency considerations. Today constraint logic programming seems more attractive since it extends logic programming with efficient mechanisms, managing symbolic and numeric constraints. Once presented the theoretical bases of such mechanisms, this paper attempts to delimit the real advantages of applying this new technology for the solving of scheduling problems.

[1]  J. Erschler,et al.  Ordonnancement de tâches sous contraintes: une approche énergetique , 1992 .

[2]  Jiyin Liu,et al.  Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling , 1993 .

[3]  Sergiu Rudeanu Boolean functions and equations , 1974 .

[4]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[5]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[6]  Rina Dechter,et al.  From Local to Global Consistency , 1990, Artif. Intell..

[7]  J. Carlier,et al.  An algorithm for solving the job-shop problem , 1989 .

[8]  David L. Waltz,et al.  Generating Semantic Descriptions From Drawings of Scenes With Shadows , 1972 .

[9]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[10]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[11]  Bernard A. Nadel,et al.  Constraint satisfaction algorithms 1 , 1989, Comput. Intell..

[12]  Michael J. Maher,et al.  Constraint Logic Programming: A Survey , 1994, J. Log. Program..

[13]  Laurent Péridy,et al.  Constraint Logic Programming for Examination Timetabling , 1996, J. Log. Program..

[14]  Pierre Lopez,et al.  Modelling and managing disjunctions in scheduling problems , 1995, J. Intell. Manuf..

[15]  Patrick Esquirol Règles et processus d'inférence pour l'aide à l'ordonnancement de tâches en présence de contraintes , 1987 .

[16]  Thomas C. Henderson,et al.  Arc and Path Consistency Revisited , 1986, Artif. Intell..

[17]  Joxan Jaffar,et al.  Methodology and Implementation of a CLP System , 1987, ICLP.

[18]  Eugene C. Freuder Synthesizing constraint expressions , 1978, CACM.

[19]  Bruno Legeard,et al.  Hoist scheduling problem: an approach based on constraint logic programming , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[20]  Mark Wallace,et al.  Applying Constraints for Scheduling , 1993, NATO ASI CP.

[21]  Chia-Hoang Lee,et al.  Comments on Mohr and Henderson's Path Consistency Algorithm , 1988, Artif. Intell..

[22]  Pascal Van Hentenryck,et al.  The Constraint Logic Programming Language CHIP , 1988, FGCS.

[23]  Alain Colmerauer,et al.  Constraint logic programming: selected research , 1993 .

[24]  William F. Clocksin,et al.  Programming in Prolog , 1987, Springer Berlin Heidelberg.

[25]  J. Erschler,et al.  Potentiels sur un graphe non conjonctif et analyse d'un problème d'ordonnancement à moyens limites , 1979 .

[26]  Wolfram Büttner,et al.  Embedding Boolean Expressions into Logic Programming , 1987, J. Symb. Comput..

[27]  Marie-José Huguet Approche par contraintes pour l'aide à la décision et à la coopération en gestion de production , 1994 .

[28]  S. Elmaghraby,et al.  The Analysis of Activity Networks Under Generalized Precedence Relations GPRs , 1992 .

[29]  Algèbre moderne et théorie des graphes, orientés vers les sciencies économiques et sociales, Tome I, par Bernard Roy. 416 pages. Dunod, Paris, 1969. 96 F. , 1972 .

[30]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[31]  Nicolas Beldiceanu,et al.  Extending CHIP in order to solve complex scheduling and placement problems , 1993, JFPL.

[32]  A. Colmerauer,et al.  Prolog, bases théoriques et développements actuels , 1983 .

[33]  Helmut Simonis,et al.  Extending Equation Solving and Constraint Handling in Logic Programming , 1989 .

[34]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[35]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[36]  Rolf H. Möhring,et al.  Scheduling project networks with resource constraints and time windows , 1988 .

[37]  Alexander Bockmayr Logic Programming with Pseudo-Boolean Constraints , 1991, WCLP.

[38]  Pascal Van Hentenryck,et al.  Solving Large Combinatorial Problems in Logic Programming , 1990, J. Log. Program..

[39]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.