The neuroethology of C. elegans escape

[1]  Junho Lee,et al.  Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons , 2011, Nature Neuroscience.

[2]  Christian Braendle,et al.  A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits , 2011, BMC Evolutionary Biology.

[3]  William S. Ryu,et al.  An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion , 2011, Neuron.

[4]  M. Goodman,et al.  DEG/ENaC but Not TRP Channels Are the Major Mechanoelectrical Transduction Channels in a C. elegans Nociceptor , 2011, Neuron.

[5]  Cornelia I. Bargmann,et al.  Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes , 2011, Nature.

[6]  Jennifer K Pirri,et al.  The C. elegans Touch Response Facilitates Escape from Predacious Fungi , 2011, Current Biology.

[7]  Leonid Kruglyak,et al.  Catecholamine receptor polymorphisms affect decision-making in C. elegans , 2011, Nature.

[8]  Matthew M. Crane,et al.  Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. , 2011, Nature methods.

[9]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[10]  R. Sommer,et al.  Co-option of the hormone-signalling module dafachronic acid–DAF-12 in nematode evolution , 2010, Nature.

[11]  N. Tinbergen On aims and methods of Ethology , 2010 .

[12]  William R. Schafer,et al.  utomated imaging of neuronal activity in freely behaving Caenorhabditis elegans uliette , 2010 .

[13]  Xingzhong Liu,et al.  Trap Induction and Trapping in Eight Nematode-trapping Fungi (Orbiliaceae) as Affected by Juvenile Stage of Caenorhabditis elegans , 2010, Mycopathologia.

[14]  Sharad Ramanathan,et al.  Optical interrogation of neural circuits in Caenorhabditis elegans , 2009, Nature Methods.

[15]  H. Horvitz,et al.  Ligand-Gated Chloride Channels Are Receptors for Biogenic Amines in C. elegans , 2009, Science.

[16]  K. Hohberg,et al.  Foraging theory and partial consumption in a tardigrade–nematode system , 2009 .

[17]  Mark J. Alkema,et al.  A Tyramine-Gated Chloride Channel Coordinates Distinct Motor Programs of a Caenorhabditis elegans Escape Response , 2009, Neuron.

[18]  M. D. Bono,et al.  Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans , 2009, Nature.

[19]  Evan Z. Macosko,et al.  Quantitative Mapping of a Digenic Behavioral Trait Implicates Globin Variation in C. elegans Sensory Behaviors , 2009, Neuron.

[20]  M. Dickinson,et al.  Performance trade-offs in the flight initiation of Drosophila , 2008, Journal of Experimental Biology.

[21]  V. Perrichot,et al.  Carnivorous Fungi from Cretaceous Amber , 2007, Science.

[22]  S. Hazir,et al.  Predation of entomopathogenic nematodes by Sancassania sp. (Acari: Acaridae) , 2007, Experimental and Applied Acarology.

[23]  Cori Bargmann,et al.  Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans , 2007, Nature Methods.

[24]  W. Symondson,et al.  Molecular detection of predation by soil micro‐arthropods on nematodes , 2006, Molecular ecology.

[25]  M. J. Allen,et al.  Making an escape: development and function of the Drosophila giant fibre system. , 2006, Seminars in cell & developmental biology.

[26]  Leon Avery,et al.  Dietary choice behavior in Caenorhabditis elegans , 2006, Journal of Experimental Biology.

[27]  M. Félix,et al.  Natural variation and population genetics of Caenorhabditis elegans. , 2005, WormBook : the online review of C. elegans biology.

[28]  Cornelia I. Bargmann,et al.  Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans , 2005, Nature.

[29]  Keqin Zhang,et al.  Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. , 2005, Mycologia.

[30]  Keqin Zhang,et al.  Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes , 2005 .

[31]  D. Faber,et al.  The Mauthner Cell Half a Century Later: A Neurobiological Model for Decision-Making? , 2005, Neuron.

[32]  Mark J Alkema,et al.  Tyramine Functions Independently of Octopamine in the Caenorhabditis elegans Nervous System , 2005, Neuron.

[33]  H. Schulenburg,et al.  Evolutionary history of Caenorhabditis elegans inferred from microsatellites: evidence for spatial and temporal genetic differentiation and the occurrence of outbreeding. , 2004, Molecular biology and evolution.

[34]  Jens Herberholz,et al.  Escape behavior and escape circuit activation in juvenile crayfish during prey–predator interactions , 2004, Journal of Experimental Biology.

[35]  A. V. Maricq,et al.  Neuronal Control of Locomotion in C. elegans Is Modified by a Dominant Mutation in the GLR-1 Ionotropic Glutamate Receptor , 1999, Neuron.

[36]  W. J. Heitler,et al.  Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish , 1999, Trends in Neurosciences.

[37]  P. Katz,et al.  Neuromodulation Intrinsic to the Central Pattern Generator for Escape Swimming in Tritonia a , 1998, Annals of the New York Academy of Sciences.

[38]  R. Kessin,et al.  How cellular slime molds evade nematodes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M B Foreman,et al.  The direction change concept for reticulospinal control of goldfish escape , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[41]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  Robert C. Eaton,et al.  Neural Mechanisms of Startle Behavior , 1984 .

[44]  R. Thorn,et al.  Carnivorous Mushrooms , 1984, Science.

[45]  Frederick M. Ausubel,et al.  Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates , 2010, Nature Reviews Immunology.

[46]  M. Chalfie,et al.  The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals , 2005, Nature Neuroscience.

[47]  Caenorhabditis Elegans Martinchalfieandjohnsulston Developmental Genetics of the Mechanosensory Neurons of Caenorhabditis elegans , 2003 .

[48]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[49]  P. Grewal Influence of Bacteria and Temperature On the Reproduction of Caenorhabditis Elegans (Nematoda: Rhabditidae) Infesting Mushrooms (Agaricus Bispor Us) , 1991 .

[50]  N. A. Croll Behavioural analysis of nematode movement. , 1975, Advances in parasitology.

[51]  G. Hoyle,et al.  The neuronal basis of behavior in Tritonia. 3. Neuronal mechanism of a fixed action pattern. , 1973, Journal of neurobiology.

[52]  G. Hoyle,et al.  The neuronal basis of behavior in Tritonia. IV. The central origin of a fixed action pattern demonstrated in the isolated brain. , 1973, Journal of neurobiology.

[53]  C. L. Duddington The ecology of predacious fungi , 1951 .