Homography based visual servo control with scene reconstruction

Homography based visual servoing is an approach that blends image based feedback with feedback that is reconstructed from the image to control an autonomous system to move along a desired trajectory. Adaptive control methods have been previously developed by compensating for an unknown parameter (i.e., the depth of a feature) in the dynamics, where persistence of excitation assumptions are used for parameter identification. Rather than assume persistent excitation, an augmented adaptive update law that uses recorded data is utilized in this paper to guarantee exponential tracking and parameter identification with only finite excitation. By identifying the depth parameter, the structure of the scene can be reconstructed, enabling simultaneous mapping and control.

[1]  Guoqiang Hu,et al.  Homography-Based Visual Servo Control With Imperfect Camera Calibration , 2009, IEEE Transactions on Automatic Control.

[2]  E. Malis,et al.  2 1/2 D Visual Servoing , 1999 .

[3]  Girish Chowdhary,et al.  Concurrent learning adaptive control of linear systems with exponentially convergent bounds , 2013 .

[4]  Guoqiang Hu,et al.  Adaptive visual servo control to simultaneously stabilize image and pose error , 2012 .

[5]  Guoqiang Hu,et al.  Quaternion-Based Visual Servo Control in the Presence of Camera Calibration Error , 2007, 2007 IEEE International Conference on Control Applications.

[6]  S. Hutchinson,et al.  Visual Servo Control Part II : Advanced Approaches , 2007 .

[7]  Samia Boukir,et al.  Structure From Controlled Motion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  François Chaumette,et al.  Visual servo control. II. Advanced approaches [Tutorial] , 2007, IEEE Robotics & Automation Magazine.

[9]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[10]  Philippe Martinet,et al.  2 1/2 D visual servoing with central catadioptric cameras , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[12]  Nikolaos Papanikolopoulos,et al.  Computation of shape through controlled active exploration , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[13]  Naira Hovakimyan,et al.  Visual Tracking of a Maneuvering Target , 2006 .

[14]  Olivier Faugeras,et al.  Motion and Structure from Motion in a piecewise Planar Environment , 1988, Int. J. Pattern Recognit. Artif. Intell..

[15]  N.R. Gans,et al.  Visual servoing to an arbitrary pose with respect to an object given a single known length , 2008, 2008 American Control Conference.

[16]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[17]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[18]  François Chaumette,et al.  2 1/2 D visual servoing: a possible solution to improve image-based and position-based visual servoings , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[19]  S. Shankar Sastry,et al.  An Invitation to 3-D Vision , 2004 .

[20]  Eric N. Johnson,et al.  Theory and Flight-Test Validation of a Concurrent-Learning Adaptive Controller , 2011 .

[21]  Larry H. Matthies,et al.  Kalman filter-based algorithms for estimating depth from image sequences , 1989, International Journal of Computer Vision.

[22]  Warren E. Dixon,et al.  Homography-based visual servo regulation of mobile robots , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[23]  W. MacKunis,et al.  Euclidean Calculation of Feature Points of a Rotating Satellite: A Daisy Chaining Approach , 2007, 2007 American Control Conference.

[24]  François Chaumette,et al.  2 1/2 D Visual Servoing with Respect to Unknown Objects Through a New Estimation Scheme of Camera Displacement , 2000, International Journal of Computer Vision.

[25]  Wei Xing Zheng,et al.  On improved robust stabilization of uncertain systems with unknown input delay , 2006, Autom..

[26]  Naira Hovakimyan,et al.  Adaptive Disturbance Rejection Controller for Visual Tracking of a Maneuvering Target , 2007 .

[27]  A. Hanson,et al.  Scaled Euclidean 3D reconstruction based on externally uncalibrated cameras , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[28]  Warren E. Dixon,et al.  Adaptive homography-based visual servo tracking , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[29]  Guoqiang Hu,et al.  Adaptive Homography-Based Visual Servo Tracking Control via a Quaternion Formulation , 2010, IEEE Transactions on Control Systems Technology.

[30]  Giuseppe Oriolo,et al.  Feature Depth Observation for Image-based Visual Servoing: Theory and Experiments , 2008, Int. J. Robotics Res..

[31]  Warren E. Dixon,et al.  Adaptive homography-based visual servo tracking for a fixed camera configuration with a camera-in-hand extension , 2005, IEEE Transactions on Control Systems Technology.

[32]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .