Enhancement of 6-pentyl-α-pyrone fermentation activity in an extractive liquid-surface immobilization (Ext-LSI) system by mixing anion-exchange resin microparticles.

[1]  S. Oda,et al.  Derepression of carbon catabolite repression in an extractive liquid-surface immobilization (Ext-LSI) system. , 2012, Journal of bioscience and bioengineering.

[2]  S. Oda,et al.  Synthesis of (-)-β-caryophyllene oxide via regio- and stereoselective endocyclic epoxidation of β-caryophyllene with Nemania aenea SF 10099-1 in a liquid-liquid interface bioreactor (L-L IBR). , 2011, Journal of bioscience and bioengineering.

[3]  S. Oda,et al.  Efficient hydrolytic reaction of an acetate ester with fungal lipase in a liquid-liquid interface bioreactor (L-L IBR) using CaCO₃-coated ballooned microsphere. , 2011, Journal of bioscience and bioengineering.

[4]  K. Isshiki,et al.  Production of 6-pentyl-α-pyrone with Trichoderma atroviride and its mutant in a novel extractive liquid-surface immobilization (Ext-LSI) system , 2009 .

[5]  K. Isshiki,et al.  Regio- and Stereoselective Subterminal Hydroxylations of n-Decane by Fungi in a Liquid-Liquid Interface Bioreactor (L-L IBR) , 2009 .

[6]  K. Isshiki,et al.  Asymmetric Reduction of Benzil to (S)-Benzoin with Penicillium claviforme IAM 7294 in a Liquid-Liquid Interface Bioreactor (L-L IBR) , 2008, Bioscience, biotechnology, and biochemistry.

[7]  K. Isshiki,et al.  Liquid-surface immobilization system and liquid–liquid interface bioreactor: Application to fungal hydrolysis , 2007 .

[8]  Wei Liao,et al.  Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production , 2007, Applied biochemistry and biotechnology.

[9]  E. Galindo,et al.  From shake flasks to stirred fermentors: Scale-up of an extractive fermentation process for 6-pentyl-α-pyrone production by Trichoderma harzianum using volumetric power input , 2006 .

[10]  E. Galindo,et al.  6-pentyl-alpha-pyrone production by Trichoderma harzianum: the influence of energy dissipation rate and its implications on fungal physiology. , 2005, Biotechnology and bioengineering.

[11]  Ana Irene Nápoles Solenzal,et al.  Detoxification of sugarcane bagasse hemicellulosic hydrolysate with ion-exchange resins for xylitol production by calcium alginate-entrapped cells , 2004 .

[12]  Bing-Lan Liu,et al.  Effect of fungal pellet size on the high yield production of destruxin B by Metarhizium anisopliae , 2004 .

[13]  J. Feijen,et al.  Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. , 2001, The Journal of antimicrobial chemotherapy.

[14]  G. Saucedo-Castañeda,et al.  Production of 6-pentyl-α-pyrone by Trichoderma harzianum in liquid and solid state cultures , 2000 .

[15]  J. Cooney,et al.  Microbial Transformation of the Trichoderma Metabolite 6-n-Pentyl-2H-pyran-2-one , 1997 .

[16]  H. Cutler,et al.  6-Pentyl-α-pyrone from Trichoderma harzianum: its plant growth inhibitory and antimicrobial properties , 1986 .

[17]  J. Speier,et al.  Destruction of microorganisms by contact with solid surfaces , 1982 .

[18]  R. Hattori Growth and spore formation of Bacillus subtilis adsorbed on an anion-exchange resin. , 1976 .

[19]  R. Hattori GROWTH OF ESCHERICHIA COLI ON THE SURFACE OF AN ANION-EXCHANGE RESIN IN CONTINUOUS FLOW SYSTEM , 1972 .

[20]  R. L. Raymond,et al.  Microbial hydrocarbon co-oxidation. II. Use of ion-exchange resins. , 1969, Applied microbiology.