Multi-objective tuning of nonlinear PID controllers for greenhouse environment using Evolutionary Algorithms

This paper investigates the issue of PID-controller parameters tuning for a greenhouse climate control system using Evolutionary Algorithms based on multiple performance measures such as good set-point tracking and smooth control signals. A model of nonlinear thermodynamic laws between numerous system variables affecting the greenhouse climate is formulated. The proposed tuning scheme is validated for greenhouse climate control by minimizing the integrated time square error (ITSE) and the control increment or rate in a series of simulations. The results show that the controllers by tuning the gain parameters can achieve good control performance through step responses such as small overshoot, fast settling time, and less rise time and steady state error. Maybe it is quite an effective and promising tuning method using multi-objective algorithms in the complex greenhouse production.

[1]  Jing-Chung Shen,et al.  New tuning method for PID controller , 2001, Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204).

[2]  M. Krstic,et al.  PID tuning using extremum seeking: online, model-free performance optimization , 2006, IEEE Control Systems.

[3]  Konstantinos G. Arvanitis,et al.  Environmental control for plants on Earth and in space , 2001 .

[4]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[5]  H. Madsen,et al.  Identification of a Linear Continuous Time Stochastic Model of the Heat Dynamics of a Greenhouse , 1998 .

[6]  Renato A. Krohling,et al.  Designing PI/PID controllers for a motion control system based on genetic algorithms , 1997, Proceedings of 12th IEEE International Symposium on Intelligent Control.

[7]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[8]  Flávio Neves,et al.  PID control of MIMO process based on rank niching genetic algorithm , 2008, Applied Intelligence.

[9]  Chengwei Ma,et al.  Modeling greenhouse air humidity by means of artificial neural network and principal component analysis , 2010 .

[10]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[11]  Liang Huang,et al.  Multiobjective Optimization for Controller Design , 2008 .

[12]  Konstantinos G. Arvanitis,et al.  A nonlinear feedback technique for greenhouse environmental control , 2003 .

[13]  Miroslav Krstic,et al.  PID Tuning Using Extremum Seeking , 2005 .

[14]  Leandro dos Santos Coelho,et al.  A MULTIOBJECTIVE GENETIC ALGORITHM APPLIED TO MULTIVARIABLE CONTROL OPTIMIZATION , 2008 .

[15]  José Boaventura Cunha,et al.  GREENHOUSE CLIMATE MODELS: AN OVERVIEW , 2003 .

[16]  Fathi Fourati,et al.  A greenhouse control with feed-forward and recurrent neural networks , 2007, Simul. Model. Pract. Theory.

[17]  Wei-Der Chang,et al.  A multi-crossover genetic approach to multivariable PID controllers tuning , 2007, Expert Syst. Appl..

[18]  J. Ríos-Moreno,et al.  Greenhouse energy consumption prediction using neural networks models , 2009 .

[19]  M. K. Ghosal,et al.  Modeling and experimental validation of a greenhouse with evaporative cooling by moving water film over external shade cloth , 2003 .

[20]  H.-J. Tantau,et al.  Non-linear constrained MPC: Real-time implementation of greenhouse air temperature control , 2005 .

[21]  Xavier Blasco Ferragud,et al.  Multiobjective Tuning of Robust GPC Controllers using Evolutionary Algorithms , 2008, IJCCI.