On unequal error protection LDPC codes based on Plotkin-type constructions

A family of unequal error-protection (UEP) low-density parity-check (LDPC) codes, based on Plotkin-type constructions, is introduced. The codes are decoded in multiple stages in such a manner that the order of decoding determines the level of error protection. The level of UEP among the code bits can be further increased by properly combining structured and random-like LDPC component codes with carefully chosen properties, and by using some new reliability features. The proposed scheme also offers a good trade-off between code performance on the one hand and encoding/decoding and storage complexity on the other. To the best of our knowledge, the proposed approach represents the first iterative UEP method with analytically provable properties.

[1]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[2]  Ilya Dumer,et al.  Recursive decoding of Reed-Muller codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[3]  Wil J. van Gils Linear unequal error protection codes from shorter codes , 1984, IEEE Trans. Inf. Theory.

[4]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[5]  Nazanin Rahnavard,et al.  Unequal error protection using low-density parity-check codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[6]  G.D. Forney,et al.  Codes on graphs: Normal realizations , 2000, IEEE Trans. Inf. Theory.

[7]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[8]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[9]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[10]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[11]  M. Marcellin,et al.  Adaptive error protection low-density parity-check codes for joint source-channel coding schemes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[12]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[13]  B. Vasic,et al.  Structured LDPC codes over GF(2/sup m/) and companion matrix based decoding , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[14]  Hou-Shou Chen Optimal encoding, trellis structure, and normalized weight of linear block codes. , 1999 .

[15]  I. Dumer Soft-Decision Majority Decoding of Reed – Muller Codes , 2000 .

[16]  I. Dumer,et al.  Recursive List Decoding for Reed-Muller Codes and Their Subcodes , 2002 .

[17]  Bane V. Vasic,et al.  Combinatorial constructions of low-density parity-check codes for iterative decoding , 2002, IEEE Transactions on Information Theory.