On unequal error protection LDPC codes based on Plotkin-type constructions
暂无分享,去创建一个
[1] Sae-Young Chung,et al. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.
[2] Ilya Dumer,et al. Recursive decoding of Reed-Muller codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[3] Wil J. van Gils. Linear unequal error protection codes from shorter codes , 1984, IEEE Trans. Inf. Theory.
[4] Daniel A. Spielman,et al. Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.
[5] Nazanin Rahnavard,et al. Unequal error protection using low-density parity-check codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[6] G.D. Forney,et al. Codes on graphs: Normal realizations , 2000, IEEE Trans. Inf. Theory.
[7] Rüdiger L. Urbanke,et al. Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.
[8] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[9] G. Forney,et al. Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[10] Daniel A. Spielman,et al. Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[11] M. Marcellin,et al. Adaptive error protection low-density parity-check codes for joint source-channel coding schemes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[12] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[13] B. Vasic,et al. Structured LDPC codes over GF(2/sup m/) and companion matrix based decoding , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[14] Hou-Shou Chen. Optimal encoding, trellis structure, and normalized weight of linear block codes. , 1999 .
[15] I. Dumer. Soft-Decision Majority Decoding of Reed – Muller Codes , 2000 .
[16] I. Dumer,et al. Recursive List Decoding for Reed-Muller Codes and Their Subcodes , 2002 .
[17] Bane V. Vasic,et al. Combinatorial constructions of low-density parity-check codes for iterative decoding , 2002, IEEE Transactions on Information Theory.