Remote temperature-measurement instrumentation for a heated rotating turbine disk

Thermographic-phosphor (TP) remote temperature sensors were installed on a turbine disk and subjected to thermal and centrifugal stresses in a spin-pit test. The sensors were placed at three different radii on the disk, which was run at 6600, 9330, 11400, and 13200 rpm at nominal temperatures of ambient, 300) degree)F, 600)degree)F, 900)degree)F, and 1250)degree)F (149)degree)C, 316)degree)C, 482)degree)C, and 677)degree)C, respectively). The paper gives details of the TP temperature-measurement method, phosphor bonding to the disk, calibration, optical-system design, and electronics instrumentation. The temperatures measured by the TP sensors were compared with those measured by thermocouples mounted on the disk. A number of the thermocouples behaved erratically after we operated the disk at 677)degree)C for an extended period. Nevertheless, for those cases where they could be compared with confidence, the agreement between the TP sensors and the thermocouples was good. 6 refs., 7 figs., 4 tabs.