Ray methods for Free Boundary Problems

We discuss the use of the WKB ansatz in a variety of parabolic problems involving a small parameter. We analyse the Stefan problem for small latent heat, the Black--Scholes problem for an American put option, and some nonlinear diffusion equations, in each case constructing an asymptotic solution by the use of ray methods.

[1]  J. B. Keller,et al.  American options on assets with dividends near expiry , 2002 .

[2]  J. Crank Free and moving boundary problems , 1984 .

[3]  J. R. King,et al.  The mesa problem: diffusion patterns for ut=⊇. (um⊇u) as m→+∞ , 1986 .

[4]  Rachel Kuske,et al.  Optimal exercise boundary for an American put option , 1998 .

[5]  Morton E. Gurtin,et al.  Thermodynamics and the supercritical Stefan equations with nucleations , 1994 .

[6]  W. Kath,et al.  Waiting‐Time Behavior in a Nonlinear Diffusion Equation , 1982 .

[7]  George Esq. Green,et al.  On the Motion of Waves in a variable canal of small depth and width , 1838 .

[8]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[9]  J. King EXACT MULTIDIMENSIONAL SOLUTIONS TO SOME NONLINEAR DIFFUSION EQUATIONS , 1993 .

[10]  Sam Howison,et al.  Asymptotic behavior of solutions to the Stefan problem with a kinetic condition at the free boundary , 1989, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[11]  K. A. Rathjen,et al.  Two-dimensional solidification in a corner , 1970 .

[12]  P. Wilmott,et al.  The Mathematics of Financial Derivatives: Preface , 1995 .

[13]  Xinfu Chen,et al.  A Mathematical Analysis of the Optimal Exercise Boundary for American Put Options , 2007, SIAM J. Math. Anal..

[14]  A. Soward,et al.  A unified approach to Stefan’s problem for spheres and cylinders , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[15]  K. Stewartson,et al.  On Stefan’s problem for spheres , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  Charles Knessl Asymptotic analysis of the American call option with dividends , 2002, European Journal of Applied Mathematics.

[17]  Donald G. Aronson,et al.  Limit behaviour of focusing solutions to nonlinear diffusions , 1998 .