Merit Functions for Complementarity and Related Problems: A Survey

Merit functions have become important tools for solving various mathematical problems arising from engineering sciences and economic systems. In this paper, we are surveying basic principles and properties of merit functions and some of their applications. As a particular case we will consider the nonlinear complementarity problem (NCP) and present a collection of different merit functions. We will also introduce and study a class of smooth merit functions for the NCP.

[1]  L. Qi Regular Pseudo-Smooth NCP and BVIP Functions and Globally and Quadratically Convergent Generalized Newton Methods for Complementarity and Variational Inequality Problems , 1999 .

[2]  Patrick T. Harker,et al.  A nonsmooth Newton method for variational inequalities, I: Theory , 1994, Math. Program..

[3]  Paul Tseng,et al.  Merit functions for semi-definite complemetarity problems , 1998, Math. Program..

[4]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[5]  A. Fischer A Newton-type method for positive-semidefinite linear complementarity problems , 1995 .

[6]  Tao Wang,et al.  A Positive Algorithm for the Nonlinear Complementarity Problem , 1995, SIAM J. Optim..

[7]  Xiaojun Chen,et al.  A penalized Fischer-Burmeister NCP-function , 2000, Math. Program..

[8]  M. Seetharama Gowda,et al.  Regularization of P[sub 0]-Functions in Box Variational Inequality Problems , 2000, SIAM J. Optim..

[9]  Roberto Andreani,et al.  The reformulation of nonlinear complementarity problems using the Fischer-burmeister function , 1999 .

[10]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[11]  F. Facchinei,et al.  A Simply Constrained Optimization Reformulation of KKT Systems Arising from Variational Inequalities , 1999 .

[12]  Houyuan Jiang Unconstrained minimization approaches to nonlinear complementarity problems , 1996, J. Glob. Optim..

[13]  F. Facchinei,et al.  On Unconstrained and Constrained Stationary Points of the Implicit Lagrangian , 1997 .

[14]  Torbjörn Larsson,et al.  A class of gap functions for variational inequalities , 1994, Math. Program..

[15]  M. Fukushima,et al.  A New Merit Function and a Descent Method for Semidefinite Complementarity Problems , 1998 .

[16]  M. Fukushima,et al.  New NCP-Functions and Their Properties , 1997 .

[17]  Muhamed Aganagic,et al.  Newton's method for linear complementarity problems , 1984, Math. Program..

[18]  Helmut Kleinmichel,et al.  A New Class of Semismooth Newton-Type Methods for Nonlinear Complementarity Problems , 1998, Comput. Optim. Appl..

[19]  M. Fukushima,et al.  On stationary points of the implicit Lagrangian for nonlinear complementarity problems , 1995 .

[20]  Defeng Sun,et al.  A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities , 2000, Math. Program..

[21]  William W. Hager,et al.  Stabilized Sequential Quadratic Programming , 1999, Comput. Optim. Appl..

[22]  Stephen J. Wright Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution , 1998, Comput. Optim. Appl..

[23]  Christian Kanzow,et al.  On the resolution of monotone complementarity problems , 1996, Comput. Optim. Appl..

[24]  J. M. Martínez,et al.  Solution of Finite-Dimensional Variational Inequalities Using Smooth Optimization with Simple Bounds , 1997 .

[25]  Ji-Ming Peng,et al.  Equivalence of variational inequality problems to unconstrained minimization , 1997, Math. Program..

[26]  Jong-Shi Pang,et al.  Newton's Method for B-Differentiable Equations , 1990, Math. Oper. Res..

[27]  Jiming Peng Convexity of the Implicit Lagrangian , 1997 .

[28]  S. Billups Algorithms for complementarity problems and generalized equations , 1996 .

[29]  J. M. Martínez,et al.  Inexact Newton methods for solving nonsmooth equations , 1995 .

[30]  Giles Auchmuty Variational principles for variational inequalities , 1989 .

[31]  Daniel Ralph,et al.  Smooth SQP Methods for Mathematical Programs with Nonlinear Complementarity Constraints , 1999, SIAM J. Optim..

[32]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..

[33]  Masao Fukushima,et al.  Equivalence of Complementarity Problems to Differentiable Minimization: A Unified Approach , 1996, SIAM J. Optim..

[34]  A. Fischer An NCP–Function and its Use for the Solution of Complementarity Problems , 1995 .

[35]  Francisco Facchinei,et al.  Regularity Properties of a Semismooth Reformulation of Variational Inequalities , 1998, SIAM J. Optim..

[36]  Francisco Facchinei,et al.  On the Identification of Zero Variables in an Interior-Point Framework , 1999, SIAM J. Optim..

[37]  Masao Fukushima,et al.  Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities , 1998, Math. Program..

[38]  Olvi L. Mangasarian,et al.  Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..

[39]  F. Giannessi Vector Variational Inequalities and Vector Equilibria , 2000 .

[40]  M. Kojima Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .

[41]  Andreas Fischer,et al.  Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..

[42]  M. Fukushima Merit Functions for Variational Inequality and Complementarity Problems , 1996 .

[43]  Houyuan Jiang,et al.  Global and Local Superlinear Convergence Analysis of Newton-Type Methods for Semismooth Equations with Smooth Least Squares , 1998 .

[44]  Defeng Sun,et al.  A New Unconstrained Differentiable Merit Function for Box Constrained Variational Inequality Problems and a Damped Gauss-Newton Method , 1999, SIAM J. Optim..

[45]  Masao Fukushima,et al.  A New Merit Function and a Successive Quadratic Programming Algorithm for Variational Inequality Problems , 1996, SIAM J. Optim..

[46]  Jirí V. Outrata,et al.  A Newton method for a class of quasi-variational inequalities , 1995, Comput. Optim. Appl..

[47]  Jong-Shi Pang,et al.  Nonsmooth Equations: Motivation and Algorithms , 1993, SIAM J. Optim..

[48]  Andreas Fischer Merit Functions and Stability for Complementarity Problems , 1998 .

[49]  B. Kummer NEWTON's METHOD FOR NON-DIFFERENTIABLE FUNCTIONS , 1988, Advances in Mathematical Optimization.

[50]  Jorge J. Moré,et al.  Global Methods for Nonlinear Complementarity Problems , 1994, Math. Oper. Res..

[51]  F. Facchinei,et al.  Beyond Monotonicity in Regularization Methods for Nonlinear Complementarity Problems , 1999 .

[52]  Christian Kanzow,et al.  A QP-free constrained Newton-type method for variational inequality problems , 1999, Math. Program..

[53]  Olvi L. Mangasarian,et al.  A Linearly Convergent Derivative-Free Descent Method for Strongly Monotone Complementarity Problems , 1999, Comput. Optim. Appl..

[54]  Jong-Shi Pangy Total Stability of Variational Inequalities , 1998 .

[55]  Mikhail V. Solodov Stationary Points of Bound Constrained Minimization Reformulations of Complementarity Problems , 1997 .

[56]  Francisco Facchinei,et al.  A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems , 1997, Math. Program..

[57]  Paul Tseng,et al.  Error Bound and Convergence Analysis of Matrix Splitting Algorithms for the Affine Variational Inequality Problem , 1992, SIAM J. Optim..

[58]  Defeng Sun,et al.  On NCP-Functions , 1999, Comput. Optim. Appl..

[59]  A. Auslender Optimisation : méthodes numériques , 1976 .

[60]  Mohamed A. Tawhid,et al.  On Two Applications of H-Differentiability to Optimization and Complementarity Problems , 2000, Comput. Optim. Appl..

[61]  F. Facchinei,et al.  A semismooth Newton method for variational in - equalities: The case of box constraints , 1997 .

[62]  Jong-Shi Pang,et al.  Inexact Newton methods for the nonlinear complementarity problem , 1986, Math. Program..

[63]  Andrzej P. Wierzbicki Note on the equivalence of Kuhn-Tucker complementarity conditions to an equation , 1982 .

[64]  F. Facchinei Structural and Stability Properties of P 0 Nonlinear Complementarity Problems , 1998 .

[65]  A. Fischer New Constrained Optimization Reformulation of Complementarity Problems , 1998 .

[66]  José Mario Martínez,et al.  Solution of linear complementarity problems using minimization with simple bounds , 1995, J. Glob. Optim..

[67]  Patrick T. Harker,et al.  Newton's method for the nonlinear complementarity problem: A B-differentiable equation approach , 1990, Math. Program..

[68]  Francisco Facchinei,et al.  Minimization of SC1 functions and the Maratos effect , 1995, Oper. Res. Lett..

[69]  Jong-Shi Pang,et al.  A B-differentiable equation-based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems , 1991, Math. Program..

[70]  B. Curtis Eaves,et al.  On the basic theorem of complementarity , 1971, Math. Program..

[71]  Masao Fukushima,et al.  Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems , 1992, Math. Program..

[72]  K. G. Murty,et al.  Complementarity problems , 2000 .

[73]  C. Kanzow Some equation-based methods for the nonlinear complementarity problem , 1994 .

[74]  J. J. Moré,et al.  Smoothing of mixed complementarity problems , 1995 .

[75]  Jia Hao Wu,et al.  A general descent framework for the monotone variational inequality problem , 1990, Math. Program..

[76]  Houyuan Jiang,et al.  A New Nonsmooth Equations Approach to Nonlinear Complementarity Problems , 1997 .

[77]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[78]  G. Franco Separation of Sets and Gap Functions for Quasi-Variational Inequalities , 1995 .

[79]  A. Fischer A special newton-type optimization method , 1992 .

[80]  Zhi-Quan Luo,et al.  Error bounds for analytic systems and their applications , 1994, Math. Program..

[81]  O. Mangasarian Equivalence of the Complementarity Problem to a System of Nonlinear Equations , 1976 .

[82]  F. Facchinei,et al.  Inexact Newton Methods for Semismooth Equations with Applications to Variational Inequality Problems , 1996 .

[83]  S. M. Robinson Sensitivity Analysis of Variational Inequalities by Normal-Map Techniques , 1995 .

[84]  Francisco Facchinei,et al.  A semismooth equation approach to the solution of nonlinear complementarity problems , 1996, Math. Program..

[85]  P. Tseng Growth behavior of a class of merit functions for the nonlinear complementarity problem , 1996 .

[86]  M. Ferris,et al.  Projected Gradient Methods for Nonlinear Complementarity Problems via Normal Maps , 1995 .

[87]  M. Seetharama Gowda,et al.  Algebraic Univalence Theorems for Nonsmooth Functions , 2000 .

[88]  Michael Patriksson,et al.  Merit functions and descent algorithms for a class of variational inequality problems , 1997 .

[89]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[90]  Francisco Facchinei,et al.  A New Merit Function For Nonlinear Complementarity Problems And A Related Algorithm , 1997, SIAM J. Optim..

[91]  M. Fukushima,et al.  A New Derivative-Free Descent Method for the Nonlinear Complementarity Problem , 2000 .

[92]  Olvi L. Mangasarian,et al.  Nonlinear complementarity as unconstrained and constrained minimization , 1993, Math. Program..

[93]  Francisco Facchinei,et al.  On the Accurate Identification of Active Constraints , 1998, SIAM J. Optim..

[94]  Patrick T. Harker,et al.  Smooth Approximations to Nonlinear Complementarity Problems , 1997, SIAM J. Optim..

[95]  G. Isac Complementarity Problems , 1992 .

[96]  Mohamed A. Tawhid,et al.  Existence and Limiting Behavior of Trajectories Associated with P0-equations , 1999, Comput. Optim. Appl..

[97]  K. Taji,et al.  Unconstrained Optimization Reformulations of Variational Inequality Problems , 1997 .

[98]  M. Fukushima,et al.  Equivalence of the generalized complementarity problem to differentiable unconstrained minimization , 1996 .