Synergy effects on blending Li-rich and classical layered cathode oxides with improved electrochemical performance

[1]  Kai Qi,et al.  Hybridization design of materials and devices for flexible electrochemical energy storage , 2019, Energy Storage Materials.

[2]  Jun Lu,et al.  Temperature-Sensitive Structure Evolution of Lithium-Manganese-Rich Layered Oxides for Lithium-Ion Batteries. , 2018, Journal of the American Chemical Society.

[3]  S. Liao,et al.  Formation of a Tubular Assembly by Ultrathin Ti0.8Co0.2N Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Hydrogen–/Metal–Air Fuel Cells , 2018, ACS Catalysis.

[4]  K. Kang,et al.  Suppression of Voltage Decay through Manganese Deactivation and Nickel Redox Buffering in High‐Energy Layered Lithium‐Rich Electrodes , 2018 .

[5]  Christopher S. Johnson,et al.  The quest for manganese-rich electrodes for lithium batteries: strategic design and electrochemical behavior , 2018 .

[6]  Chundong Wang,et al.  Anodic Hydrazine Oxidation Assists Energy-Efficient Hydrogen Evolution over a Bifunctional Cobalt Perselenide Nanosheet Electrode. , 2018, Angewandte Chemie.

[7]  Zhaoping Liu,et al.  Ultrafast Heterogeneous Nucleation Enables a Hierarchical Surface Configuration of Lithium‐Rich Layered Oxide Cathode Material for Enhanced Electrochemical Performances , 2018 .

[8]  Ya‐Xia Yin,et al.  Suppressing Surface Lattice Oxygen Release of Li‐Rich Cathode Materials via Heterostructured Spinel Li4Mn5O12 Coating , 2018, Advanced materials.

[9]  A. Michaelis,et al.  Recent insights into the electrochemical behavior of blended lithium insertion cathodes: A review , 2018 .

[10]  P. He,et al.  Direct Visualization of the Reversible O2−/O− Redox Process in Li‐Rich Cathode Materials , 2018, Advanced materials.

[11]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[12]  Ya‐Xia Yin,et al.  High‐Capacity Cathode Material with High Voltage for Li‐Ion Batteries , 2018, Advanced materials.

[13]  Shiming Zhang,et al.  A novel strategy to significantly enhance the initial voltage and suppress voltage fading of a Li- and Mn-rich layered oxide cathode material for lithium-ion batteries , 2018 .

[14]  J. Tarascon,et al.  Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes , 2017, Nature Communications.

[15]  Tao Zhang,et al.  Layered/Spinel Heterostructured and Hierarchical Micro/Nanostructured Li-Rich Cathode Materials with Enhanced Electrochemical Properties for Li-Ion Batteries. , 2017, ACS applied materials & interfaces.

[16]  Ji‐Guang Zhang,et al.  Li‐ and Mn‐Rich Cathode Materials: Challenges to Commercialization , 2017 .

[17]  F. Pan,et al.  A Novel Strategy to Suppress Capacity and Voltage Fading of Li‐ and Mn‐Rich Layered Oxide Cathode Material for Lithium‐Ion Batteries , 2017 .

[18]  K. An,et al.  Kinetic characteristics up to 4.8 V of layered LiNi1/3Co1/3Mn1/3O2 cathode materials for high voltage lithium-ion batteries , 2017 .

[19]  Jianming Zheng,et al.  Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries , 2017, Nature Communications.

[20]  M. Winter,et al.  Changing Established Belief on Capacity Fade Mechanisms: Thorough Investigation of LiNi1/3Co1/3Mn1/3O2 (NCM111) under High Voltage Conditions , 2017 .

[21]  M. Fowler,et al.  Dynamics of a Blended Lithium-Ion Battery Electrode During Galvanostatic Intermittent Titration Technique , 2016 .

[22]  Feng Wang,et al.  Thermal Synergy Effect between LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 Enhances the Safety of Blended Cathode for Lithium Ion Batteries. , 2016, ACS Applied Materials and Interfaces.

[23]  Ya‐Xia Yin,et al.  Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[24]  Yan Chen,et al.  Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries , 2016, Nature Communications.

[25]  Y. Meng,et al.  Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries , 2016 .

[26]  Zhiyong Guo,et al.  A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2, Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge–discharge , 2015 .

[27]  J. Colin,et al.  Role of the composition of lithium-rich layered oxide materials on the voltage decay , 2015 .

[28]  M. J. McDonald,et al.  Toward a stabilized lattice framework and surface structure of layered lithium-rich cathode materials with Ti modification. , 2015, Physical chemistry chemical physics : PCCP.

[29]  Peter Lamp,et al.  Future generations of cathode materials: an automotive industry perspective , 2015 .

[30]  K. Amine,et al.  Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li(1.2)Ni(0.2)Mn(0.6)O2 cathode material for lithium ion batteries. , 2015, Nano letters.

[31]  D. Kisailus,et al.  Crystal structure and size effects on the performance of Li[Ni_1/3Co_1/3Mn_1/3]O_2 cathodes , 2015 .

[32]  Jun Ma,et al.  Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries , 2014, Nature Communications.

[33]  Ling Huang,et al.  Kinetics and structural changes of Li-rich layered oxide 0.5Li2MnO3·0.5LiNi(0.292)Co(0.375)Mn(0.333)O2 material investigated by a novel technique combining in situ XRD and a multipotential step. , 2014, ACS applied materials & interfaces.

[34]  Lingyun Liu,et al.  A review of blended cathode materials for use in Li-ion batteries , 2014 .

[35]  Kevin G. Gallagher,et al.  Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes , 2013 .

[36]  Christopher S. Johnson,et al.  Study of Thermal Decomposition of Li1‐x(Ni1/3Mn1/3Co1/3)0.9O2 Using In‐Situ High‐Energy X‐Ray Diffraction , 2013 .

[37]  Lijun Wu,et al.  Combining In Situ Synchrotron X‐Ray Diffraction and Absorption Techniques with Transmission Electron Microscopy to Study the Origin of Thermal Instability in Overcharged Cathode Materials for Lithium‐Ion Batteries , 2013 .

[38]  Xiqian Yu,et al.  Cathode Materials: Combining In Situ Synchrotron X‐Ray Diffraction and Absorption Techniques with Transmission Electron Microscopy to Study the Origin of Thermal Instability in Overcharged Cathode Materials for Lithium‐Ion Batteries (Adv. Funct. Mater. 8/2013) , 2013 .

[39]  Jianming Zheng,et al.  Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. , 2012, ACS nano.

[40]  Xianyou Wang,et al.  The effects of FePO4-coating on high-voltage cycling stability and rate capability of Li[Ni0.5Co0.2Mn0.3]O2 , 2012 .

[41]  R. Santhanam,et al.  Influence of lithium content on high rate cycleability of layered Li1+xNi0.30CO0.30Mn0.40O2 cathodes for high power lithium-ion batteries , 2010 .

[42]  Y. S. Lee,et al.  Preparation and cycle performance at high temperature for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4 , 2010 .

[43]  K. Kang,et al.  Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery , 2010 .

[44]  Kyung Yoon Chung,et al.  In situ X-ray diffraction studies of mixed LiMn2O4–LiNi1/3Co1/3Mn1/3O2 composite cathode in Li-ion cells during charge–discharge cycling , 2009 .

[45]  Dennis W. Dees,et al.  Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode , 2009 .

[46]  Xiao‐Qing Yang,et al.  Structural changes and thermal stability of charged LiNi1/3Co1/3Mn1/3O2 cathode material for Li-ion batteries studied by time-resolved XRD , 2009 .

[47]  K. Zaghib,et al.  Dual active material composite cathode structures for Li-ion batteries , 2008 .

[48]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[49]  De-cheng Li,et al.  The effects of extra Li content, synthesis method, sintering temperature on synthesis and electrochemistry of layered LiNi1/3Mn1/3Co1/3O2 , 2006 .

[50]  L. J. Fu,et al.  Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique , 2006 .

[51]  D. A. D. Corte,et al.  Editors' Choice—Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries , 2016 .

[52]  Haegyeom Kim,et al.  Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries , 2014 .

[53]  Kevin G. Gallagher,et al.  Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density , 2013 .