Hierarchical Multiscale Modeling Method for Head/Disk Interface

Multiscale modeling opens a new paradigm by providing a novel methodology of establishing molecular design criteria and potentially gives several orders of magnitude advances in nanotechnology. The head/disk interface (HDI) in the hard disk drive system investigated here can be used as a benchmark for multiscale modeling. Our approach, stemmed from the novel middle-out approach in modern multiscale modeling using the lattice Boltzmann method (LBM) as the centerpiece formulation, marches towards continuum level (top) and molecular level (bottom). This approach will become an extremely valuable tool in generating design criteria of HDI.

[1]  Myung S. Jhon,et al.  Mathematical simulation of ultra-thin polymeric film spreading dynamics , 2001 .

[2]  Bruno Marchon,et al.  Complex terraced spreading of perfluoropolyalkylether films on carbon surfaces , 1999 .

[3]  Shigehisa Fukui,et al.  Analysis of Ultra-thin Gas Film Lubrication Based on the Linearized Boltzmann Equation : Influence of Accommodation Coefficient , 1987 .

[4]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[5]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[6]  Kurt Binder,et al.  Static and Dynamic Properties of Adsorbed Chains at Surfaces: Monte Carlo Simulation of a Bead-Spring Model , 1996 .

[7]  Hyung Min Kim,et al.  Langmuir Slip Model for Air Bearing Simulation Using the Lattice Boltzmann Method , 2007, IEEE Transactions on Magnetics.

[8]  Mohammed A. Zikry,et al.  Nanoindentation of model diamond nanocomposites: Hierarchical molecular dynamics and finite-element simulations , 2009 .

[9]  Cristina H. Amon,et al.  A novel heat transfer model and its application to information storage systems , 2005 .

[10]  Athanassios Z. Panagiotopoulos,et al.  Monte Carlo calculation of phase equilibria for a bead-spring polymeric model , 1994 .

[11]  Jorge M. Seminario,et al.  Calculation of intramolecular force fields from second‐derivative tensors , 1996 .

[12]  Myung S. Jhon,et al.  Spreading and dewetting in nanoscale lubrication , 2005 .

[13]  Pil Seung Chung,et al.  The Static and Dynamic Responses of Binary Mixture Perfluoropolyether Lubricant Films— Molecular Structural Effects , 2009, IEEE Transactions on Magnetics.

[14]  최형진,et al.  Lubricants in Future Data Storage Technology , 2001 .

[15]  J. Gui Tribology challenges for head-disk interface toward 1 Tb/in/sup 2/ , 2003 .

[16]  Myung S. Jhon,et al.  Nano‐Rheology of Single Unentangled Polymeric Lubricant Films , 2008 .

[17]  C. Bauer,et al.  Monte Carlo simulations of liquid spreading on a solid surface: effect of end-group functionality. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Kurt Binder,et al.  Off‐lattice Monte Carlo simulation of dilute and concentrated polymer solutions under theta conditions , 1993 .

[19]  M. Jhon Physicochemical Properties of Nanostructured Perfluoropolyether Films , 2004 .

[20]  Myung S. Jhon,et al.  Dynamic simulation of nanoscale lubricant films , 2002 .

[21]  Robert M. Crone,et al.  A new molecular gas lubrication theory suitable for head-disk interface modeling , 1999 .

[22]  Myung S. Jhon,et al.  Simulation of ultrathin lubricant films spreading over various carbon surfaces , 2000 .

[23]  Chang Shu,et al.  Application of lattice Boltzmann method to simulate microchannel flows , 2002 .

[24]  Weimin Zhang,et al.  Q-Chem 2.0: a high-performance ab initio electronic structure program package , 2000, J. Comput. Chem..

[25]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[26]  Woo Tae Kim,et al.  Nanoscale air bearing modeling via lattice Boltzmann method , 2005 .