Collisional N-body Dynamics Coupled to Self-gravitating Magnetohydrodynamics Reveals Dynamical Binary Formation
暂无分享,去创建一个
Simon Portegies Zwart | Stephen L. W. McMillan | Mordecai-Mark Mac Low | Ralf S. Klessen | R. Klessen | S. McMillan | S. Zwart | M. M. Low | Joshua E. Wall | J. E. Wall
[1] B. Fryxell,et al. FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .
[2] S. Tremaine,et al. Galactic Dynamics , 2005 .
[3] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[4] Douglas C. Heggie,et al. Binary evolution in stellar dynamics , 1975 .
[5] S. Chatterjee,et al. MONTE CARLO SIMULATIONS OF GLOBULAR CLUSTER EVOLUTION. V. BINARY STELLAR EVOLUTION , 2009, 0912.4682.
[6] David P. Doane,et al. Aesthetic Frequency Classifications , 1976 .
[7] Harvard-Smithsonian CfA,et al. Stellar Multiplicity , 2013, 1303.3028.
[8] P. Hut,et al. Building a better leapfrog , 1995 .
[9] R. Weaver,et al. Interstellar bubbles. II - Structure and evolution , 1977 .
[10] K. Kusano,et al. A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .
[11] R. Klessen,et al. GRAVITATIONAL CONTRACTION VERSUS SUPERNOVA DRIVING AND THE ORIGIN OF THE VELOCITY DISPERSION–SIZE RELATION IN MOLECULAR CLOUDS , 2015, 1511.05602.
[12] T. Naab,et al. Supernova blast waves in wind-blown bubbles, turbulent, and power-law ambient media , 2016, 1604.04395.
[13] S. Zwart,et al. The Origin of OB Runaway Stars , 2011, Science.
[14] T. Abel,et al. enzo+moray: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing , 2010, 1012.2865.
[15] F. I. Pelupessy,et al. The evolution of embedded star clusters , 2011, 1111.0992.
[16] A. Tokovinin,et al. The mass ratio distribution of B-type visual binaries in the Sco OB2 association , 2002 .
[17] J. Weingartner,et al. Photoelectric Emission from Interstellar Dust: Grain Charging and Gas Heating , 1999, astro-ph/9907251.
[18] Embedding Lagrangian Sink Particles in Eulerian Grids , 2003, astro-ph/0312612.
[19] R. Klessen,et al. The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae , 2016, 1606.05346.
[20] P. Kroupa. On the variation of the initial mass function , 2000, astro-ph/0009005.
[21] J. Hills. Encounters between binary and single stars and their effect on the dynamical evolution of stellar systems , 1975 .
[22] Andreas Burkert,et al. Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds , 1998 .
[23] R. Klessen,et al. Gravitational Collapse in Turbulent Molecular Clouds. II. Magnetohydrodynamical Turbulence , 2000, astro-ph/0009227.
[24] Richard I. Klein,et al. The Jeans Condition: A New Constraint on Spatial Resolution in Simulations of Isothermal Self-Gravitational Hydrodynamics , 1997 .
[25] A. Tielens,et al. Neutral Atomic Phases of the Interstellar Medium in the Galaxy , 2003 .
[26] M. Giersz,et al. mocca code for star cluster simulations – I. Blue stragglers, first results , 2012, 1207.6700.
[27] S. Stahler,et al. Embedded binaries and their dense cores , 2017, 1705.00049.
[28] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[29] P. Ricker. A Direct Multigrid Poisson Solver for Oct-Tree Adaptive Meshes , 2007, 0710.4397.
[30] H. Zinnecker,et al. The primordial binary population. I. A near-infrared adaptive optics search for close visual companions to A star members of Scorpius OB2 , 2004, astro-ph/0410106.
[31] M. Mac Low,et al. Turbulent Structure of a Stratified Supernova-driven Interstellar Medium , 2005, astro-ph/0601005.
[32] R. Klessen,et al. Fervent: chemistry-coupled, ionizing and non-ionizing radiative feedback in hydrodynamical simulations , 2015, 1503.08987.
[33] T. Fukushige,et al. Effects of Hardness of Primordial Binaries on the Evolution of Star Clusters , 2009, 1005.2237.
[34] N. Drost,et al. The Astrophysical Multipurpose Software Environment , 2013, 1307.3016.
[35] M. Bate. The importance of radiative feedback for the stellar initial mass function , 2008, 0811.1035.
[36] T. Boeker,et al. Stellar dynamics in gas: the role of gas damping , 2014, 1404.0379.
[37] S. Zwart,et al. The initial mass function of star clusters that form in turbulent molecular clouds , 2013, 1309.1223.
[38] R. Klessen,et al. Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.
[39] P. Padoan,et al. INFALL-DRIVEN PROTOSTELLAR ACCRETION AND THE SOLUTION TO THE LUMINOSITY PROBLEM , 2014, 1407.1445.
[40] Bruce G. Elmegreen,et al. The Initial Stellar Mass Function from Random Sampling in a Turbulent Fractal Cloud , 1997 .
[41] R. Klessen,et al. LIMITING ACCRETION ONTO MASSIVE STARS BY FRAGMENTATION-INDUCED STARVATION , 2010, 1005.3271.
[42] Junichiro Makino,et al. BRIDGE: A Direct-Tree Hybrid N -Body Algorithm for Fully Self-Consistent Simulations of Star Clusters and Their Parent Galaxies , 2007, 0706.2059.
[43] I. A. Bonnell,et al. Modelling accretion in protobinary systems , 1995 .
[44] M. Bate. Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation , 2011, 1110.1092.
[45] B. Ercolano,et al. Before the first supernova: combined effects of H II regions and winds on molecular clouds , 2014, 1404.6102.
[46] E. Solano,et al. A Catalog of Wide Binary and Multiple Systems of Bright Stars from Gaia-DR2 and the Virtual Observatory , 2019, The Astronomical Journal.
[47] J. Wisdom,et al. Symplectic maps for the N-body problem. , 1991 .
[48] R. Klein,et al. An unstable truth: how massive stars get their mass , 2016, 1607.03117.
[49] R. Klein,et al. RADIATION-HYDRODYNAMIC SIMULATIONS OF THE FORMATION OF ORION-LIKE STAR CLUSTERS. II. THE INITIAL MASS FUNCTION FROM WINDS, TURBULENCE, AND RADIATION , 2012, 1203.2620.
[50] Richard I. Klein,et al. Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores , 2006, astro-ph/0609798.
[51] R. Klessen,et al. MODELING COLLAPSE AND ACCRETION IN TURBULENT GAS CLOUDS: IMPLEMENTATION AND COMPARISON OF SINK PARTICLES IN AMR AND SPH , 2010, 1001.4456.
[52] G. Melnick,et al. Thermal Balance in Dense Molecular Clouds: Radiative Cooling Rates and Emission-Line Luminosities , 1995 .
[53] R. Klessen,et al. THE INTERPLAY OF MAGNETIC FIELDS, FRAGMENTATION, AND IONIZATION FEEDBACK IN HIGH-MASS STAR FORMATION , 2010, 1010.5905.
[54] G. Bryan,et al. KINETIC ENERGY FROM SUPERNOVA FEEDBACK IN HIGH-RESOLUTION GALAXY SIMULATIONS , 2014, 1410.3822.
[55] R. Klessen,et al. A simple method to convert sink particles into stars , 2016, 1610.02538.
[56] M. Norman,et al. yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.
[57] Francesco Palla,et al. The Formation of Stars , 2005 .
[58] Dongwook Lee,et al. A solution accurate, efficient and stable unsplit staggered mesh scheme for three dimensional magnetohydrodynamics , 2013, J. Comput. Phys..
[59] R. Klessen,et al. Magnetic fields during the early stages of massive star formation – I. Accretion and disc evolution , 2011, 1106.4485.
[60] Christoph Federrath,et al. A NEW JEANS RESOLUTION CRITERION FOR (M)HD SIMULATIONS OF SELF-GRAVITATING GAS: APPLICATION TO MAGNETIC FIELD AMPLIFICATION BY GRAVITY-DRIVEN TURBULENCE , 2011, 1102.0266.
[61] F. Inti Pelupessy,et al. Multi-physics simulations using a hierarchical interchangeable software interface , 2011, Comput. Phys. Commun..
[62] Frank Timmes,et al. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.
[63] Efficiencies of Low-Mass Star and Star Cluster Formation , 2000, astro-ph/0007383.
[64] B. Draine. Physics of the Interstellar and Intergalactic Medium , 2011 .
[65] V. Hertzog,et al. Physical Processes In The Interstellar Medium , 2016 .