Minimum entropy static output-feedback control with an H∞-norm performance bound

The problem of designing static output-feedback controllers is considered. The controller is required to minimize the closed-loop entropy (at s=/spl infin/) and to satisfy a prescribed H/sub /spl infin//-norm bound. The design equations consist of a modified Riccati equation and a Lyapunov equation that are coupled via a projection. These equations are solved using a homotopy algorithm. The design procedure is illustrated by two examples. The first one is a classical example that was solved in the literature using convex optimization techniques. The second example is one of designing a gain-scheduled normal acceleration loop for an air launched unmanned air vehicle.

[1]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[2]  David J. N. Limebeer,et al.  Solutions to the H∞ general distance problem which minimize an entropy integral , 1991, Autom..

[3]  D. Bernstein,et al.  The optimal projection equations for fixed-order dynamic compensation , 1984 .

[4]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[5]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[6]  Michael G. Safonov,et al.  CACSD using the state-space L/sup infinity / theory-a design example , 1988 .

[7]  Keith Glover,et al.  The application of scheduled H∞ controllers to a VSTOL aircraft , 1993, IEEE Trans. Autom. Control..

[8]  John H. Blakelock,et al.  Automatic control of aircraft and missiles , 1965 .

[9]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[10]  I. Petersen Disturbance attenuation and H^{∞} optimization: A design method based on the algebraic Riccati equation , 1987 .

[11]  Anton A. Stoorvogel The singular minimum entropy H control problem , 1991 .

[12]  M. Athans,et al.  On the determination of the optimal constant output feedback gains for linear multivariable systems , 1970 .

[13]  A. T. Neto,et al.  Stabilization via static output feedback , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[14]  A. S. Hodel,et al.  Homotopy methods for the solution of general modified algebraic Riccati equations , 1993 .

[15]  D. Hyland,et al.  Reduced-order compensation - Linear-quadratic reduction versus optimal projection , 1988 .

[16]  P. Khargonekar,et al.  State-space solutions to standard H2 and H(infinity) control problems , 1989 .

[17]  Jakob Stoustrup,et al.  THE H, CONTROL PROBLEM USING STATIC OUTPUT FEEDBACK , 1994 .

[18]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[19]  Guoxiang Gu,et al.  Disturbance attenuation and H(infinity) optimization with linear output feedback control , 1994 .

[20]  Joseph Z. Ben-Asher,et al.  OPTIMAL TRAJECTORIES FOR AN UNMANNED AIR-VEHICLE IN THE HORIZONTAL PLANE , 1995 .