Efficient Approximation Methods for the Global Long-Term Behavior of Dynamical Systems - Theory, Algorithms and Examples

In this thesis we develop efficient numerical algorithms in order to analyze the long-term behavior of dynamical systems by transfer operator methods. Three new approaches are represented. First, a discretization via sparse grids is introduced for general systems, aiming to overcome the curse of dimension. Second, for continuous-time systems the infinitesimal generator of the associated transfer operator semigroup is treated numerically. A robust cell-to-cell approach, and a spectral method approach for smooth problems are derived. Third, focusing on the detection of conformation changes in molecules, mean field theory is used to approximate the marginal dynamics on low-dimensional subsystems. Also, conditions are given under which the Galerkin projection of a transfer operator can be related to the small random perturbation of the underlying system.

[1]  Michael Dellnitz,et al.  Detecting and Locating Near-Optimal Almost-Invariant Sets and Cycles , 2002, SIAM J. Sci. Comput..

[2]  W. Huisinga,et al.  Metastability and Dominant Eigenvalues of Transfer Operators , 2006 .

[3]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[4]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[5]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[6]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[7]  Michael Dellnitz,et al.  An adaptive subdivision technique for the approximation of attractors and invariant measures , 1998 .

[8]  G. Froyland,et al.  Detection of coherent oceanic structures via transfer operators. , 2007, Physical review letters.

[9]  C. S. Hsu,et al.  Cell-to-Cell Mapping , 1987 .

[10]  J. Mccammon,et al.  Conformation gating as a mechanism for enzyme specificity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Jerrold E. Marsden,et al.  Uncertainty in the dynamics of conservative maps , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[12]  Tien-Yien Li Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture , 1976 .

[13]  Michael Dellnitz,et al.  The Computation of Unstable Manifolds Using Subdivision and Continuation , 1996 .

[14]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[15]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  Fern Y. Hunt,et al.  A Monte Carlo approach to the approximation of invariant measures , 1993 .

[17]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[18]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[19]  Michael Griebel,et al.  Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications , 2007 .

[20]  Gary Froyland,et al.  Estimating physical invariant measures and space averages of dynamical systems indicators , 1997, Bulletin of the Australian Mathematical Society.

[21]  D. Vere-Jones Markov Chains , 1972, Nature.

[22]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[23]  Qiang Du,et al.  High order approximation of the Frobenius-Perron operator , 1993 .

[24]  M. Dellnitz,et al.  An adaptive method for the approximation of the generalized cell mapping , 1997 .

[25]  A. M. Treguier,et al.  Multiple Zonal Jets in a Quasigeostrophic Model of the Antarctic Circumpolar Current , 1994 .

[26]  Marcus Weber,et al.  Stable Computation of Probability Densities for Metastable Dynamical Systems , 2007, Multiscale Model. Simul..

[27]  Peter Deuflhard,et al.  Transfer Operator Approach to Conformational Dynamics in Biomolecular Systems , 2001 .

[28]  Tosio Kato Perturbation theory for linear operators , 1966 .

[29]  H. Amann Dual semigroups and second order linear elliptic boundary value problems , 1983 .

[30]  W. Tucker The Lorenz attractor exists , 1999 .

[31]  Christopher Bose,et al.  The exact rate of approximation in Ulam's method , 2000 .

[32]  Y. Kifer General random perturbations of hyperbolic and expanding transformations , 1986 .

[33]  Jörg Wallaschek,et al.  On the application of set-oriented numerical methods in the analysis of railway vehicle dynamics , 2004 .

[34]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[35]  Lai-Sang Young,et al.  What Are SRB Measures, and Which Dynamical Systems Have Them? , 2002 .

[36]  G. Birkhoff Proof of the Ergodic Theorem , 1931, Proceedings of the National Academy of Sciences.

[37]  M. Dellnitz,et al.  Seasonal variability of the subpolar gyres in the Southern Ocean: a numerical investigation based on transfer operators , 2009 .

[38]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[39]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[40]  Gary Froyland,et al.  Finite Approximation of Sinai-Bowen-Ruelle Measures for Anosov Systems in Two Dimensions , 1995 .

[41]  Shane D. Ross,et al.  Transport in Dynamical Astronomy and Multibody Problems , 2005, Int. J. Bifurc. Chaos.

[42]  Michael Dellnitz,et al.  Computation of Essential Molecular Dynamics by Subdivision Techniques , 1996, Computational Molecular Dynamics.

[43]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[44]  S. Ulam A collection of mathematical problems , 1960 .

[45]  V. Arnold,et al.  Sur la topologie des écoulements stationnaires des fluides parfaits , 1965 .

[46]  Péter Koltai,et al.  Mean Field Approximation in Conformation Dynamics , 2009, Multiscale Model. Simul..

[47]  Péter Koltai,et al.  Discretization of the Frobenius-Perron Operator Using a Sparse Haar Tensor Basis: The Sparse Ulam Method , 2009, SIAM J. Numer. Anal..

[48]  G. Froyland Statistically optimal almost-invariant sets , 2005 .

[49]  Emmanuel Hebey,et al.  Nonlinear analysis on manifolds , 1999 .

[50]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[51]  Lai-Sang Young,et al.  Sinai-Bowen-Ruelle measures for certain Hénon maps , 1993 .

[52]  Paweł Góra On small stochastic perturbations of mappings of the unit interval , 1984 .

[53]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[54]  B Gaveau,et al.  Multiple phases in stochastic dynamics: geometry and probabilities. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  C. Schütte Conformational Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules , 1999 .

[56]  B. Gaveau,et al.  Theory of nonequilibrium first-order phase transitions for stochastic dynamics , 1998 .

[57]  O. Junge,et al.  On the Approximation of Complicated Dynamical Behavior , 1999 .

[58]  D. Kröner Numerical Schemes for Conservation Laws , 1997 .

[59]  Ernst Hairer,et al.  The life-span of backward error analysis for numerical integrators , 1997 .

[60]  P. Deuflhard,et al.  Molecular Conformation Dynamics and Computational Drug Design , 2004 .

[61]  M. Dellnitz,et al.  A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .

[62]  Michael Griebel,et al.  Sparse grids for boundary integral equations , 1999, Numerische Mathematik.

[63]  Tien Yien Li,et al.  Markov finite approximation of Frobenius-Perron operator , 1991 .

[64]  Uriel Frisch,et al.  Chaotic streamlines in the ABC flows , 1986, Journal of Fluid Mechanics.

[65]  J. Osborn Spectral approximation for compact operators , 1975 .

[66]  J. Doob Stochastic processes , 1953 .

[67]  E. C. Zeeman,et al.  Stability of dynamical systems , 1988 .

[68]  P. Deuflhard,et al.  Robust Perron cluster analysis in conformation dynamics , 2005 .

[69]  J. McWilliams,et al.  Topographic Influences on Wind-Driven, Stratified Flow in a β-Plane Channel: An Idealized Model for the Antarctic Circumpolar Current , 1990 .

[70]  Jiu Ding,et al.  Finite approximations of Frobenius-Perron operators. A solution of Ulam's conjecture to multi-dimensional transformations , 1996 .

[71]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .